• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于元胞自动机的开裂混凝土氯离子扩散模拟与分析

马俊军 蔺鹏臻 刘应龙 何志刚

马俊军, 蔺鹏臻, 刘应龙, 何志刚. 基于元胞自动机的开裂混凝土氯离子扩散模拟与分析[J]. 西南交通大学学报, 2022, 57(2): 360-368. doi: 10.3969/j.issn.0258-2724.20210359
引用本文: 马俊军, 蔺鹏臻, 刘应龙, 何志刚. 基于元胞自动机的开裂混凝土氯离子扩散模拟与分析[J]. 西南交通大学学报, 2022, 57(2): 360-368. doi: 10.3969/j.issn.0258-2724.20210359
MA Junjun, LIN Pengzhen, LIU Yinglong, HE Zhigang. Simulation and Analysis of Chloride Ion Diffusion in Cracked Concrete Based on Cellular Automata[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 360-368. doi: 10.3969/j.issn.0258-2724.20210359
Citation: MA Junjun, LIN Pengzhen, LIU Yinglong, HE Zhigang. Simulation and Analysis of Chloride Ion Diffusion in Cracked Concrete Based on Cellular Automata[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 360-368. doi: 10.3969/j.issn.0258-2724.20210359

基于元胞自动机的开裂混凝土氯离子扩散模拟与分析

doi: 10.3969/j.issn.0258-2724.20210359
基金项目: 国家自然科学基金(U1934205,51878323);甘肃省建设科技攻关项目(JK2021-03);甘肃省教育科技创新项目(2021CXZX-568);甘肃省教育厅青年博士基金(2021QB-056)
详细信息
    作者简介:

    马俊军(1994—), 男, 博士研究生, 研究方向为桥梁结构设计理论及耐久性, E-mail:majjlz@163.com

    通讯作者:

    蔺鹏臻(1977—), 男, 教授, 博士, 博导, 研究方向为桥梁结构设计理论及耐久性研究, E-mail:pzhlin@mail.lzjtu.cn

  • 中图分类号: TU528

Simulation and Analysis of Chloride Ion Diffusion in Cracked Concrete Based on Cellular Automata

  • 摘要:

    为获得氯离子在开裂混凝土中的浓度分布以及分析裂缝形状、分布形式、偏转角度对混凝土中氯离子扩散效应的影响,根据氯离子在开裂混凝土中的扩散机理,利用元胞自动机和均匀化等效分析方法,建立了模拟开裂混凝土中氯离子扩散过程的元胞自动机模型,并利用数值试验对模型中元胞尺寸进行了优化. 研究结果表明:在不影响计算精度的情况下,为提高模型的计算效率,推荐采用元胞尺寸大小为0.5 mm;除个别数据外,模型模拟结果、试验结果与有限元分析结果吻合良好,最大偏差不超过10%;“V”形裂缝中氯离子浓度约为矩形裂缝的0.52倍;曲线形裂缝和折线形裂缝中氯离子浓度约为直线形裂缝的0.87倍和0.89倍;当裂缝偏转角从0° 分别增大至10°、20°、30° 时,裂缝端部氯离子浓度分别减小3.3%、21.9%、29.8%;裂缝对其周围氯离子扩散区域的影响范围与裂缝形状、分布形式和偏转角度无关,对裂缝周围氯离子扩散效应的影响主要集中在裂缝左右18 mm的范围内.

     

  • 图 1  元胞组合示意

    Figure 1.  Diagram of schematic of cellular assemblage

    图 2  氯离子扩散系数等效示意

    Figure 2.  Diagram of equivalent chlorine ion diffusion coefficient

    图 3  氯离子浓度随扩散深度的变化规律

    Figure 3.  Variation law of chloride ion concentration with diffusion depth

    图 4  利用CA模型获得的截面氯离子浓度分布结果

    Figure 4.  Chloride concentration distribution in section simulated by CA model

    图 5  利用有限元法模拟的截面氯离子浓度分布结果

    Figure 5.  Chloride concentration distribution in the cross section simulated by finite element method

    图 6  模型模拟结果与有限元解和试验值的比较

    Figure 6.  Comparison of model simulation results with element solutions and experimental values

    图 7  模型模拟值与有限元解和试验值的比较

    Figure 7.  Comparison of model simulation values with finite element solutions and experimental values

    图 8  不同裂缝形状下截面氯离子浓度模拟结果

    Figure 8.  Simulation results of chloride ion concentration in section under different crack shapes

    图 9  截面氯离子浓度沿截面宽度的变化规律

    Figure 9.  Variation law of chloride ion concentration in cross section with cross section width

    图 10  裂缝中心截面氯离子浓度随扩散深度的变化

    Figure 10.  Variation law of chloride ion concentration in central section of crack with diffusion depth

    图 11  不同裂缝分布形式下截面氯离子浓度模拟结果

    Figure 11.  Simulation results of chloride ion concentration in cross section under different crack distribution forms

    图 12  截面氯离子浓度沿截面宽度的变化

    Figure 12.  Variation law of chloride ion concentration in cross section with cross section width

    图 13  裂缝中心截面氯离子浓度随扩散深度的变化

    Figure 13.  Variation law of chloride ion concentration in central section of crack with diffusion depth

    图 14  不同裂缝偏转角下截面氯离子浓度模拟结果

    Figure 14.  Simulation results of chloride ion concentration in cross section under different fracture deflection angles

    图 15  截面氯离子浓度沿截面宽度的变化

    Figure 15.  Variation law of chloride ion concentration in cross section with cross section width

    图 16  裂缝端部截面氯离子浓度随扩散深度的变化

    Figure 16.  Variation law of chloride ion concentration in section of fracture end with diffusion depth

  • [1] 金伟良,延永东,王海龙. 氯离子在受荷混凝土内的传输研究进展[J]. 硅酸盐学报,2010,38(11): 2217-2224.

    JIN Weiliang, YAN Yongdong, WANG Hailong. Research progress on the chloride transportation in stressed concrete[J]. Journal of the Chinese Ceramic Society, 2010, 38(11): 2217-2224.
    [2] ZHANG W, FRANCOIS R, CAI Y, et al. Influence of artificial cracks and interfacial defects on the corrosion behavior of steel in concrete during corrosion initiation under a chloride environment[J]. Construction and Building Materials, 2020, 253: 119-165.
    [3] DJERBI A, BONNET S, KHELIDJ A, et al. Influence of traversing crack on chloride diffusion into concrete[J]. Cement and Concrete Research, 2008, 38(6): 877-883. doi: 10.1016/j.cemconres.2007.10.007
    [4] 何世钦,贡金鑫. 弯曲荷载作用对混凝土中氯离子扩散的影响[J]. 建筑材料学报,2005,8(2): 134-138. doi: 10.3969/j.issn.1007-9629.2005.02.004

    HE Shiqin, GONG Jinxin. Influence of flexural loading on permeability of chloride ion in concrete[J]. Journal of Building Materials, 2005, 8(2): 134-138. doi: 10.3969/j.issn.1007-9629.2005.02.004
    [5] SAHMARAN M. Effect of flexure induced transverse crack and self-healing on chloride diffusivity of reinforced mortar[J]. Journal of Materials Science, 2007, 42(22): 9131-9136. doi: 10.1007/s10853-007-1932-z
    [6] ZHU H, HUO Q, FAN J, et al. The depth-width correlation for shrinkage-induced cracks and its influence on chloride diffusion into concrete[J]. Materials, 2020, 13(12): 2751. doi: 10.3390/ma13122751
    [7] 张菊辉,刘颖慧,时哲敏. 氯离子在开裂混凝土中的扩散特性研究[J]. 建筑材料学报,2018,21(2): 299-303. doi: 10.3969/j.issn.1007-9629.2018.02.020

    ZHANG Juhui, LIU Yinghui, SHI Zhemin. Diffusion property of chloride in cracked concrete[J]. Journal of Building Materials, 2018, 21(2): 299-303. doi: 10.3969/j.issn.1007-9629.2018.02.020
    [8] LI Y, CHEN X, JIN L, et al. Experimental and numerical study on chloride transmission in cracked concrete[J]. Construction and Building Materials, 2016, 127(30): 425-435. doi: 10.1016/j.conbuildmat.2016.10.044
    [9] JANG S Y, KIM B S, OH B H. Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests[J]. Cement and Concrete Research, 2011, 41(1): 9-19. doi: 10.1016/j.cemconres.2010.08.018
    [10] ISMAIL M, TOUMI A, FRANÇOIS R, et al. Effect of crack opening on the local diffusion of chloride in cracked mortar samples[J]. Cement and Concrete Research, 2008, 38(8/9): 1106-1111. doi: 10.1016/j.cemconres.2008.03.009
    [11] 张斌,陈红帅,张权,等. 细观层次开裂混凝土中氯离子扩散数值模拟[J]. 公路交通科技(应用技术版),2020,16(6): 124-129.
    [12] GÉRARD B, MARCHAND J. Influence of cracking on the diffusion properties of cement-based materials:part I:influence of continuous cracks on the steady-state regime[J]. Cement and Concrete Research, 2000, 30(1): 37-43. doi: 10.1016/S0008-8846(99)00201-X
    [13] KWON S J, NA U J, PARK S S, et al. Service life prediction of concrete wharves with early-aged crack:Probabilistic approach for chloride diffusion[J]. Structural Safety, 2009, 31(1): 75-83. doi: 10.1016/j.strusafe.2008.03.004
    [14] PARK S S, KWON S J, JUNG S H. Analysis technique for chloride penetration in cracked concrete using equivalent diffusion and permeation[J]. Construction and Building Materials, 2012, 29: 183-192. doi: 10.1016/j.conbuildmat.2011.09.019
    [15] 马俊军,蔺鹏臻. 混凝土桥梁中氯离子传输的元胞自动机模型[J]. 铁道科学与工程学报,2018,15(12): 3135-3140.

    MA Junjun, LIN Pengzhen. Cellular automata model for chloride ion transport in concrete bridges[J]. Journal of Railway Science and Engineering, 2018, 15(12): 3135-3140.
    [16] BIONDINI F, BONTEMPI F, FRANGOPOL D M, et al. Cellular automata approach to durability analysis of concrete structures in aggressive environments[J]. Journal of Structural Engineering, 2004, 130(11): 1724-1737. doi: 10.1061/(ASCE)0733-9445(2004)130:11(1724)
    [17] DU X, JIN L, ZHANG R, et al. Effect of cracks on concrete diffusivity:a meso-scale numerical study[J]. Ocean Engineering, 2015, 108: 539-551. doi: 10.1016/j.oceaneng.2015.08.054
    [18] SCHUTTER G D. Quantification of the influence of cracks in concrete structures on carbonation and chloride penetration[J]. Magazine of Concrete Research, 1999, 51(6): 427-435. doi: 10.1680/macr.1999.51.6.427
  • 加载中
图(16)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  122
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06
  • 录用日期:  2021-12-27
  • 修回日期:  2021-10-29
  • 刊出日期:  2021-11-18

目录

    /

    返回文章
    返回