• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

洞口对低矮房屋海啸作用力的影响

杨万理 侯海林 张川江 黄宇婷 许圣祥

杨万理, 侯海林, 张川江, 黄宇婷, 许圣祥. 洞口对低矮房屋海啸作用力的影响[J]. 西南交通大学学报, 2022, 57(6): 1284-1292. doi: 10.3969/j.issn.0258-2724.20200646
引用本文: 杨万理, 侯海林, 张川江, 黄宇婷, 许圣祥. 洞口对低矮房屋海啸作用力的影响[J]. 西南交通大学学报, 2022, 57(6): 1284-1292. doi: 10.3969/j.issn.0258-2724.20200646
YANG Wanli, HOU Hailin, ZHANG Chuanjiang, HUANG Yuting, XU Shengxiang. Influence of Opening on Tsunami Force on Low-Rise House[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1284-1292. doi: 10.3969/j.issn.0258-2724.20200646
Citation: YANG Wanli, HOU Hailin, ZHANG Chuanjiang, HUANG Yuting, XU Shengxiang. Influence of Opening on Tsunami Force on Low-Rise House[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1284-1292. doi: 10.3969/j.issn.0258-2724.20200646

洞口对低矮房屋海啸作用力的影响

doi: 10.3969/j.issn.0258-2724.20200646
基金项目: 四川省科技厅重点研发项目(2019YFG0001,2019YFG0460);国家自然科学基金(51678491)
详细信息
    作者简介:

    杨万理(1979—),男,教授,博士,研究方向为滨海结构波流力,E-mail: 68360903@qq.com

  • 中图分类号: TU241.6;TU312.1

Influence of Opening on Tsunami Force on Low-Rise House

  • 摘要:

    为研究门窗及屋面板洞口对低矮房屋海啸作用力影响,在试验水槽中通过溃坝方式模拟海啸涌波,开展不同来流波高时低矮房屋海啸作用力模型试验. 分析了门窗、屋面板开洞率、开洞位置对低矮房屋海啸力的影响机理和影响规律,提出了开洞率、开洞位置影响系数. 研究结果表明:有门窗洞口时,海啸水平作用力最大值发生在波动段,并且最大值发生时刻随开洞率增大而延后,开洞率越大海啸水平力越小;门窗洞口竖向位置越接近海啸涌波高能区域时,海啸作用力最大值越小;屋面板较小的开孔即可释放裹挟空气,降低屋面板底部压力,减小结构似平稳阶段的竖向力,屋面板开孔能导致结构水平海啸力增大约20%,需要引起重视.

     

  • 图 1  溃坝涌波流场参数示意

    Figure 1.  Sketch of flow field parameters of a dam-break bore

    图 2  试验水槽实物及试验模型连接

    Figure 2.  Dam-break flume and connection ofthe experimental model

    图 3  房屋主体结构模型(前后墙预留洞口)以及具有不同开洞率的盖板模型

    Figure 3.  Main structure model of the house with openings reserved on the front and rear walls and the cover models with different opening rates

    图 4  位置变化示意

    Figure 4.  Schematic of position change

    图 5  工况8-2开洞率不同时的海啸作用力时程曲线

    Figure 5.  Time-history curves of the tsunami force in case 8-2 with different opening rates

    图 6  工况8-2海啸作用力冲击峰值与开洞率的关系

    Figure 6.  Relationship between the tsunami force peak value and the opening rate in case 8-2

    图 7  工况8-2 ${{k}}_{\mathbf{m}\mathbf{a}\mathbf{x}}$${{t}}_{\mathbf{m}\mathbf{a}\mathbf{x}}$与开洞率${n}$的关系

    Figure 7.  Relationships between ${{k}}_{\mathbf{m}\mathbf{a}\mathbf{x}}$, ${{t}}_{\mathbf{m}\mathbf{a}\mathbf{x}}$ and ${n}$ in case 8-2

    图 8  不同工况中海啸作用力最大值随开洞率变化

    Figure 8.  Variation of the tsunami force peak value with opening rate in different cases

    图 9  不同工况中海啸作用力似平稳段均值随开洞率变化趋势

    Figure 9.  Variation of the tsunami force mean value in quasi-stationary stage with opening rate in different cases

    图 10  $k_0$$n$之间的关系

    Figure 10.  Relationship between k0 and n

    图 11  工况4-2中竖向开洞位置不同时海啸作用力时程曲线

    Figure 11.  Comparison of tsunami force time-history curves of 4-2 cases with different vertical opening positions

    图 12  不同工况中$ {\mathit{k}}_{\mathit{\alpha }} $随竖向位置α变化规律

    Figure 12.  Variation of $ {\mathit{k}}_{\mathit{\alpha }} $ with vertical position α in different cases

    图 13  不同工况中β$ {\mathit{k}}_{\mathit{\beta }} $的影响

    Figure 13.  Influence of β on $ {\mathit{k}}_{\mathit{\beta }} $ in different cases

    图 14  屋面板上点压力计布置以及孔洞分布示意

    Figure 14.  Sketches of pressure gauge arrangement and opening distributions on roof panel

    图 15  工况12-2中屋面板开孔与不开孔时屋面板底部压力对比

    Figure 15.  Comparison of pressures at the bottom of roof panel without and with openings on the roof panel

    图 16  工况12-2中房屋顶部空气逃逸的CFD模拟

    Figure 16.  CFD simulation of air escape ofthe roof panel in case 12-2

    图 17  工况12-2中屋面板开洞率不同时屋面板底部压力最大值

    Figure 17.  Maximum pressure at the bottom of roof with different opening rates in case 12-2

    图 18  不同工况下屋面板竖向力峰值随开洞率变化

    Figure 18.  Variation of the peak value of the vertical force on the roof panel with opening rate in different cases

    图 19  $ {\mathit{k}}^{\mathit{*}} $$ \mathit{n}_{\rm{r}} $之间的关系

    Figure 19.  Relationship between $ {\mathit{k}}^{\mathit{*}} $ and $ \mathit{n}_{\rm{r}} $

  • [1] 侯京明,王培涛,赵联大. 从2011海啸演习看中国海啸危害[J]. 海洋科学,2013,37(12): 84-89.

    HOU Jingming, WANG Peitao, ZHAO Lianda. Characterization of tsunami disaster in China from exercise pacific wave 11[J]. Marine Sciences, 2013, 37(12): 84-89.
    [2] 王培涛,于福江,赵联大,等. 越洋海啸的数值模拟及其对我国的影响分析[J]. 海洋学报,2012,34(2): 39-47.

    WANG Peitao, YU Fujiang, ZHAO Lianda, et al. Numerical simulation of trans-oceanic tsunami and its impact analysis on Chinese coasts[J]. Acta Oceanologica Sinica, 2012, 34(2): 39-47.
    [3] 宫文壮. 广东沿海地区村镇低矮房屋台风易损性研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
    [4] 陈杰,段自豪,蒋昌波,等. 海啸波引起的近岸房屋局部冲刷试验[J]. 水利水电科技进展,2017,37(1): 33-37,78.

    CHEN Jie, DUAN Zihao, JIANG Changbo, et al. Experimental study of local scour around seaside houses by tsunami waves[J]. Advances in Science and Technology of Water Resources, 2017, 37(1): 33-37,78.
    [5] 王铁成,高振兰,赵海龙. 海啸波浪作用下开洞对结构受力性能影响的有限元分析[J]. 建筑结构学报,2014,35(4): 312-317. doi: 10.14006/j.jzjgxb.2014.04.039

    WANG Tiecheng, GAO Zhenlan, ZHAO Hailong. Finite element analysis of the influence of openings on the mechanical performance of structures under the action of tsunami waves[J]. Journal of Building Structures, 2014, 35(4): 312-317. doi: 10.14006/j.jzjgxb.2014.04.039
    [6] YEH H, ROBERTSON I, PREUSS J. Development of design guidelines for structures that serve as tsunami vertical evacuation sites[M]. Washington D. C.: Washington State Department of Natural Resources, Division of Geology and Earth Resources, 2005.
    [7] RAMSDEN J D, RAICHLEN F. Forces on vertical wall caused by incident bores[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1990, 116(5): 592-613. doi: 10.1061/(ASCE)0733-950X(1990)116:5(592)
    [8] LUKKUNAPRASIT P, CHINNARASRI C, RUANGRASSAMEE A, et al. Experimental investigation of tsunami wave forces on buildings with openings[C]// Solutions to Coastal Disasters Congress 2008. Hawaii: American Society of Civil Engineers, 2008: 82-93.
    [9] TRIATMADJA R, NURHASANAH A. Tsunami force on buildings with openings and protection[J]. Journal of Earthquake and Tsunami, 2012, 6(4): 125-129.
    [10] GHOSH D, MITTAL A K, BHATTACHARYYA S K. Multiphase modeling of tsunami impact on building with openings[J]. The Journal of Computational Multiphase Flows, 2016, 8(2): 85-94. doi: 10.1177/0010836716653881
    [11] CHANSON H. Applications of the saint-venant equations and method of characteristics to the dam break wave problem[R]. Brisbane: The University of Queensland, 2005.
    [12] CHANSON H. Analytical solution of dam break wave with flow resistance: application to tsunami surges [C]//31st IAHR Biennial Congress. Seoul: Korea Water Resources Association, 2005: 3341-3353.
    [13] ARNASON H, PETROFF C, YEH H, et al. Tsunami bore impingement onto a vertical column[J]. Journal of Disaster Research, 2009, 4(6): 391-403. doi: 10.20965/jdr.2009.p0391
    [14] CRESPO A J C, GÓMEZ-GESTEIRA M, DALRYMPLE R A. 3D SPH simulation of large waves mitigation with a dike[J]. Journal of Hydraulic Research, 2007, 45(5): 631-642. doi: 10.1080/00221686.2007.9521799
    [15] RAHMAN S, AKIB S, KHAN M T R, et al. Experimental study on tsunami risk reduction on coastal building fronted by sea wall[J]. The Scientific World Journal, 2014(2014): 729357.1-729357.7.
    [16] MOTLEY M R, WONG H K, QIN X S, et al. Tsunami-induced forces on skewed bridges[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2016, 142(3): 12-24.
    [17] DOUGLAS S, NISTOR I. On the effect of bed condition on the development of tsunami-induced loading on structures using OpenFOAM[J]. Natural Hazards, 2015, 76(2): 1335-1356. doi: 10.1007/s11069-014-1552-2
    [18] WEI Z P, DALRYMPLE R A. Numerical study on mitigating tsunami force on bridges by an SPH model[J]. Journal of Ocean Engineering and Marine Energy, 2016, 2(3): 365-380. doi: 10.1007/s40722-016-0054-6
  • 加载中
图(19)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  80
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-19
  • 修回日期:  2021-05-18
  • 网络出版日期:  2022-08-08
  • 刊出日期:  2021-05-20

目录

    /

    返回文章
    返回