• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

TA3有限接触动态加压接骨板断口分析与失效机制

郑靖 饶少凯 周均 杨丹 沈黎新 黄书浩

郑靖, 饶少凯, 周均, 杨丹, 沈黎新, 黄书浩. TA3有限接触动态加压接骨板断口分析与失效机制[J]. 西南交通大学学报, 2021, 56(2): 411-419. doi: 10.3969/j.issn.0258-2724.20190182
引用本文: 郑靖, 饶少凯, 周均, 杨丹, 沈黎新, 黄书浩. TA3有限接触动态加压接骨板断口分析与失效机制[J]. 西南交通大学学报, 2021, 56(2): 411-419. doi: 10.3969/j.issn.0258-2724.20190182
ZHENG Jing, RAO Shaokai, ZHOU Jun, YANG Dan, SHEN Lixin, HUANG Shuhao. Fracture Analysis and Failure Mechanism of TA3 Limited Contact-Dynamic Compression Plates[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 411-419. doi: 10.3969/j.issn.0258-2724.20190182
Citation: ZHENG Jing, RAO Shaokai, ZHOU Jun, YANG Dan, SHEN Lixin, HUANG Shuhao. Fracture Analysis and Failure Mechanism of TA3 Limited Contact-Dynamic Compression Plates[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 411-419. doi: 10.3969/j.issn.0258-2724.20190182

TA3有限接触动态加压接骨板断口分析与失效机制

doi: 10.3969/j.issn.0258-2724.20190182
基金项目: 国家自然科学基金(51535010);浙江省省属科研院所扶持专项(2017F10029)
详细信息
    作者简介:

    郑靖(1974—),女,研究员,研究方向为生物摩擦学,E-mail:jzheng168@swjtu.edu.cn

  • 中图分类号: V221.3

Fracture Analysis and Failure Mechanism of TA3 Limited Contact-Dynamic Compression Plates

  • 摘要: 为探究TA3纯钛有限接触动态加压接骨板(LC-DCP)在人体内服役期间发生断裂的失效机制,采用化学成分分析仪、维氏硬度仪、光学显微镜和扫描电镜(SEM)等手段,对7个临床断裂失效的TA3纯钛LC-DCP样品进行了断口形貌分析;建立了TA3纯钛LC-DCP固定股骨干中段横形骨折的三维有限元模型,并采用ANSYS对该模型进行了受力分析. 研究结果表明:7个TA3纯钛LC-DCP样品的材料符合要求,断口均位于接骨板中段螺钉孔处;断口表面均出现疲劳辉纹和二次裂纹,裂纹源区、扩展区和瞬时断裂区的元素组成相同;骨折患者在愈合前下地行走会导致接骨板的最大剪切应力大于TA3材料的屈服强度极限,且最大剪切应力发生在接骨板中段螺钉孔处;TA3纯钛LC-DCP的临床断裂失效主要源于骨折患者在愈合前下地行走导致过载,使得接骨板中段螺钉孔处萌生裂纹,随后承受循环疲劳载荷,最终断裂失效.

     

  • 图 1  1# TA3纯钛LC-DCP

    Figure 1.  1# TA3 pure titanium LC-DCP

    图 2  股骨骨折内固定系统的有限元模型

    Figure 2.  Finite element model of internal fixation system for femoral fracture

    图 3  平均弹性模量算法示意

    Figure 3.  Concept of the averaged callus property.

    图 4  TA3纯钛LC-DCP接骨板金相组织形貌

    Figure 4.  Metallographic morphology of TA3 pure titanium DCP bone plates

    图 5  典型接骨板断口表面宏观形貌

    Figure 5.  Macroscopic morphology of fracture surface of typical bone plates

    图 6  典型接骨板断口微观形貌

    Figure 6.  Microscopic morphology of fracture surface of typical bone plates

    图 7  断口表面不同区域能谱仪(EDS)图谱

    Figure 7.  Energy dispersive spectrometer spectra of different zones in the fractured surface

    图 8  接骨板远骨侧表面的最大剪切应力

    Figure 8.  Maximum shear stress on the distal surface of bone plates

    图 9  接骨板远骨侧表面最大剪切应力云图

    Figure 9.  Nephogram of maximum shear stress on distal bone surface of bone plate

    表  1  股骨和TA3纯钛的材料参数

    Table  1.   Material parameters of femur and TA3 pure titanium

    对象弹性模量/GPa泊松比
    皮质骨Ex (纵向)= 18.400
    Ey (横向) = 7.000
    Ez (径向) = 8.500
    νxy xy 面)= 0.120
    νyz yz 面)= 0.370
    νxzxz 面)= 0.140
    松质骨1.0610.225
    TA3纯钛103.4000.300
    下载: 导出CSV

    表  2  TA3纯钛LC-DCP的化学成分(质量分数)

    Table  2.   Chemical compositions of TA3 pure titanium LC-DCP (mass) %

    样品编号CNOHFe
    1#0.00160.00670.20720.00120.2081
    2#0.00300.01290.16370.00090.0701
    3#0.00230.01510.20930.00110.1673
    4#0.01060.01160.11960.00120.2543
    5#0.01160.00680.18790.00050.2008
    6#0.00200.01970.21860.00010.1798
    7#0.01010.01610.27210.00690.2500
    标准值≤0.0800≤0.0500≤0.3500≤0.0150≤0.3000
    下载: 导出CSV

    表  3  TA3纯钛DCP接骨板的维氏硬度(HV10)

    Table  3.   Vickers hardness of TA3 pure titanium DCP bone plates (HV10)

    样品编号断口基体标准值
    均值最大偏差均值最大偏差
    1# 262 15 260 11 ≥ 150
    2# 270 18 273 16
    3# 243 9 248 10
    4# 273 13 265 10
    5# 225 16 230 18
    6# 271 13 266 12
    7# 220 15 225 13
    下载: 导出CSV

    表  4  TA3纯钛LC-DCP接骨板的平均晶粒度

    Table  4.   Averaged grain size of TA3 pure titanium LC-DCP bone plates

    样品编号 断口处 基体处 标准值
    1#7.187.10 ≥ 5.00
    2# 9.21 9.20
    3# 8.66 8.59
    4# 8.48 8.37
    5# 7.00 6.95
    6# 9.24 9.21
    7# 9.67 9.60
    下载: 导出CSV

    表  5  术后4周、8周中间骨痂的材料属性

    Table  5.   Calculated material properties of the callus 4 and 8 weeks after surgery

    骨折间
    隙/mm
    4 周皮质骨4 周松质骨8 周皮质骨8 周松质骨
    弹性模
    量/MPa
    愈合效
    率/%
    弹性模
    量/MPa
    愈合效
    率/%
    弹性模
    量/MPa
    愈合效
    率/%
    弹性模
    量/MPa
    愈合效
    率/%
    1 0.06 9.54 0 0 3.79 13.35 0 0
    2 0.17 83.90 0.01 100.00 25.60 91.36 1.65 100.00
    3 0.19 100.00 0.01 100.00 28.00 100.00 1.65 100.00
    4 0.19 99.57 0.01 100.00 27.22 97.20 1.65 100.00
    5 0.18 90.06 0.01 100.00 24.91 88.89 1.65 100.00
    6 0.16 75.98 0.01 100.00 20.89 74.46 1.65 100.00
    7 0.14 63.14 0.01 86.71 17.25 61.40 1.36 82.60
    8 0.12 51.76 0.01 57.11 14.14 50.27 0.87 52.89
    9 0.11 41.35 0.01 28.30 11.06 39.24 0.38 22.89
    10 0.09 30.31 0 3.98 8.17 28.94 0.04 2.09
    下载: 导出CSV
  • OESTERN H J, TRENTZ O, URANUES S. Bone and joint injuries: trauma surgery Ⅲ[M]. Berlin : Springer, 2014: 265-296.
    谯波,蒋电明. 接骨板材料的研究现状[J]. 重庆医科大学学报,2017,42(2): 62-66.

    QIAO Bo, JIANG Dianming. Research in materials for bone plate[J]. Journal of Chongqing Medical University, 2017, 42(2): 62-66.
    王荣,杨星红. 人体主股骨接骨板断裂失效分析[J]. 腐蚀科学与防护技术,2013,25(6): 504-507.

    WANG Rong, YANG Xinghong. Failure analysis of a fracturd of bone connection plate of TA3 for body’s main femur[J]. Corrosion Science and Protection Technology, 2013, 25(6): 504-507.
    李荣,魏东,许陆,等. 外科植入用TA3钛合金接骨板断裂失效分析[J]. 理化检验(物理分册),2016,52(12): 897-899.

    LI Rong, WEI Dong, XU Lu, et al. Fracture failure analysis of TA3 titanium alloy blade plates for surgical implants[J]. Physical Testing and Chemical Analysis (Part A:Physics Testing), 2016, 52(12): 897-899.
    周梦林. 镁合金接骨板的力学性能与微动磨损特性研究[D]. 成都: 西南交通大学, 2017.
    AZEVEDO C R F, HIPPERT E. Failure analysis of surgical implants in Brazil[J]. Engineering Failure Analysis, 2002, 9(6): 621-633. doi: 10.1016/S1350-6307(02)00026-2
    AZEVEDO C R F. Failure analysis of a commercially pure titanium plate for osteosynthesis[J]. Engineering Failure Analysis, 2003, 10(2): 153-164. doi: 10.1016/S1350-6307(02)00067-5
    GHIBAN B, VARLAN F C, NIVULESCU M, et al. Fractographic evaluation of the metallic materials for medical applications[J]. Key Engineering Materials, 2017, 745(3): 62-74.
    PROVERBIO E, BONACCORSI L M. Microstructural analysis of failure of a stainless steel bone plate implant[J]. Practical Failure Analysis, 2001, 1(4): 33-38. doi: 10.1007/BF02715331
    KANCHANIMAI C, PHIPHOBMONGKOL V, MUANJAN P. Fatigue failure of an orthopedic implant—a locking compression plate[J]. Engineering Failure Analysis, 2008, 15(5): 521-530. doi: 10.1016/j.engfailanal.2007.04.001
    MARCOMINI J B, BAPTISTA C A R P, PASCON J P, et al. Investigation of a fatigue failure in a stainless steel femoral plate[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 38(38): 52-58.
    TAVARES S S M, MAINIER F B, ZIMMERMAN F, et al. Characterization of prematurely failed stainless steel orthopedic implants[J]. Engineering Failure Analysis, 2010, 17(5): 1246-1253. doi: 10.1016/j.engfailanal.2010.02.003
    NIRAJAN T, PRAYSON M, GOSWAMI T. A failure study of a locking compression plate implant[J]. Case Studies in Engineering Failure Analysis, 2015, 3(4): 68-72.
    GERVAIS B, VADEAN A, RAISON M, et al. Failure analysis of a 316L stainless steel femoral orthopedic implant[J]. Case Studies in Engineering Failure Analysis, 2016, 5: 30-38.
    MEHBOOB H, CHANG S H. Application of composites to orthopedic prostheses for effective bone healing:a review[J]. Composite Structures, 2014, 118(1): 328-341.
    KIM S H, CHANG S H, JUNG H J. The finite element analysis of a fractured tibia applied by composite bone plates considering contact conditions and time-varying properties of curing tissues[J]. Composite Structures, 2010, 92(9): 2109-2118. doi: 10.1016/j.compstruct.2009.09.051
    KIM H J, CHANG S H, JUNG H J. The simulation of tissue differentiation at a fracture gap using a mechano-regulation theory dealing with deviatoric strains in the presence of a composite bone plate[J]. Composites Part B, 2012, 43(3): 978-987. doi: 10.1016/j.compositesb.2011.09.011
    KIM H J, KIM S H, CHANG S H. Bio-mechanical analysis of a fractured tibia with composite bone plates according to the diaphyseal oblique fracture angle[J]. Composites Part B, 2011, 42(4): 666-674. doi: 10.1016/j.compositesb.2011.02.009
    HEINTZ S, GUTIERREZ-FAREWIK E M. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach[J]. Gait & Posture, 2007, 26(2): 279-288.
    PERREN S M. Evolution of the internal fixation of long bone fractures[J]. The Journal of Bone and Joint Surgery, 2002, 84(8): 1093-110. doi: 10.1302/0301-620X.84B8.0841093
    GANESH V K, RAMAKRISHNA K, GHISTA D N. Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates[J]. Bio-Medical Engineering Online, 2005, 4(1): 46-60.
    MEHBOOB H, SON D S, CHANG S H. Finite element analysis of tissue differentiation process of a tibia with various fracture configurations when a composite intramedullary rod was applied[J]. Composites Science & Technology, 2013, 80(6): 55-65.
    孙训方, 方孝淑, 关来泰. 材料力学[M]. 北京: 高等教育出版社, 2009: 243-248.
    郑照县. 股骨骨折内固定金属接骨板的生物力学性能研究[D]. 成都: 西南交通大学, 2017.
    GARDNER T N, STOLL T. The influence of mechanical stimulus on the pattern of tissue differentiation in a long bone fracture–an FEM study[J]. Biomechanics, 2000, 33(4): 415-25. doi: 10.1016/S0021-9290(99)00189-X
    PINTO C M S A, ASPRINO L, DE MORAES M. Chemical and structural analyses of titanium plates retrieved from patients[J]. International Journal of Oral & Maxillofacial Surgery, 2015, 44(8): 1005-1009.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  509
  • HTML全文浏览量:  259
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-19
  • 修回日期:  2019-05-09
  • 网络出版日期:  2020-10-13
  • 刊出日期:  2021-04-15

目录

    /

    返回文章
    返回