• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

横向声波扰动下池火火焰失稳特性

史学强 张玉涛 陈晓坤 张园勃 林国铖

史学强, 张玉涛, 陈晓坤, 张园勃, 林国铖. 横向声波扰动下池火火焰失稳特性[J]. 西南交通大学学报, 2022, 57(6): 1293-1302. doi: 10.3969/j.issn.0258-2724.20210152
引用本文: 史学强, 张玉涛, 陈晓坤, 张园勃, 林国铖. 横向声波扰动下池火火焰失稳特性[J]. 西南交通大学学报, 2022, 57(6): 1293-1302. doi: 10.3969/j.issn.0258-2724.20210152
SHI Xueqiang, ZHANG Yutao, CHEN Xiaokun, ZHANG Yuanbo, LIN Guocheng. Pool Flame Instability Characteristics under Transverse Acoustic Wave Disturbance[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1293-1302. doi: 10.3969/j.issn.0258-2724.20210152
Citation: SHI Xueqiang, ZHANG Yutao, CHEN Xiaokun, ZHANG Yuanbo, LIN Guocheng. Pool Flame Instability Characteristics under Transverse Acoustic Wave Disturbance[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1293-1302. doi: 10.3969/j.issn.0258-2724.20210152

横向声波扰动下池火火焰失稳特性

doi: 10.3969/j.issn.0258-2724.20210152
基金项目: 国家自然科学基金(51774233,51974235);国家重点研发计划(2018YFC0807900);陕西省自然科学基金(2018JZ5007)
详细信息
    作者简介:

    史学强(1994—),博士研究生,研究方向为火灾动力学,E-mail:shixueq@126.com

    通讯作者:

    张玉涛(1982—),教授,研究方向为火灾防治等,E-mail:ytzhang@ xust.edu.cn

  • 中图分类号: X928.7

Pool Flame Instability Characteristics under Transverse Acoustic Wave Disturbance

  • 摘要:

    为理解声波灭火机制及声波扰动下的火焰动力学,进行了横向低频声波扰动乙醇池火燃烧实验. 采用的低频声波频率范围为28 ~ 54 Hz,火焰位置处当地声压范围为0.10 ~ 1.25 Pa,通过改变声波导流管长度和声波导流管与火焰距离研究了声学基础参数、火焰现象学特征、火焰高度与宽度及其周期性脉动特性,并建立了耦合声波参数的火焰宽度与高度模型. 研究结果表明:相比自由火焰,较低声压扰动使火焰形态与时序变化更加稳定,较大声压扰动会使火焰失稳;随当地声学雷诺数增加,火焰相对高度被声波压制而减小,火焰宽度由被挤压转变为被拓展状态;较低声压会调制火焰导致其周期性变得更稳定,相位变得规则,较高声压会扰乱火焰周期性,使得火焰脉动紊乱,相位变得混沌.

     

  • 图 1  声波扰动火焰燃烧实验示意

    Figure 1.  Schematic of flame combustion experiment with acoustic disturbance

    图 2  不同实验条件下的声压变化

    Figure 2.  Acoustic pressure change under different experimental conditions

    图 3  自由火焰与N2-W5实验条件下的火焰概率云图

    Figure 3.  Probability contours of free flame and flame under experimental conditions of N2-W5

    图 4  火焰图像的时序分析(N2-W5,34 Hz)

    Figure 4.  Time series analysis of flame image (N2-W5, 34 Hz)

    图 5  火焰细节结构特征分析示意

    Figure 5.  Schematic of structure characteristics analysis of flame detail

    图 6  声波扰动下相对火焰高度变化

    Figure 6.  Relative flame height variation under acoustic disturbance

    图 7  火焰相对高度随声学雷诺数变化

    Figure 7.  Variation of relative flame height with acoustic Reynolds number

    图 8  声波扰动下火焰相对宽度变化

    Figure 8.  Variation of relative flame width under acoustic disturbance

    图 9  火焰宽度随声学雷诺数变化

    Figure 9.  Flame width changing with acoustic Reynolds number

    图 10  无量纲火焰高度与宽度关系

    Figure 10.  Relationship between dimensionless flame height and width

    图 11  自由及0.36 Pa声波扰动下火焰参数Iʹ(t) 随时间的变化(N2-W5,34 Hz)

    Figure 11.  Variation of flame parameter Iʹ(t) with time under free state and 0.36 Pa acoustic disturbance (N2-W5, 34 Hz)

    图 12  自由及0.36 Pa声波扰动下火焰参数Iʹ(t) 周期和相位图(N2-W5, 34 Hz)

    Figure 12.  Period and phase diagram of flame parameter Iʹ(t) under free state and 0.36 Pa acoustic disturbance (N2-W5, 34 Hz)

    图 13  0.73 Pa声波扰动下火焰参数Iʹ(t) 变化(N2-W5,34 Hz)

    Figure 13.  Variation of flame parameter Iʹ(t) under 0.73 Pa acoustic disturbance (N2-W5, 34 Hz)

    图 14  0.73 Pa声波扰动下火焰参数Iʹ(t) 的周期和相位(N2-W5, 34 Hz)

    Figure 14.  Period and phase diagram of flame parameter Iʹ(t) under 0.73 Pa acoustic disturbance (N2-W5, 34 Hz)

    表  1  实验采用的参数

    Table  1.   Experimental parameters cm

    实验简称LnLw实验简称LnLw
    N2-W525N10-W0100
    N2-W10210N10-W101010
    N5-W050N15-W0150
    N5-W10510N15-W101510
    下载: 导出CSV
  • [1] 朱军,佘平,李维炼,等. 基于导航网格的室内火灾逃生路径动态规划[J]. 西南交通大学学报,2020,55(5): 1103-1110.

    ZHU Jun, SHE Ping, LI Weilian, et al. Dynamic planning method for indoor-fire escape path based on navigation grid[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1103-1110.
    [2] NIEGODAJEW P, ŁUKASIAK K, RADOMIAK H, et al. Application of acoustic oscillations in quenching of gas burner flame[J]. Combustion and Flame, 2018, 194: 245-249. doi: 10.1016/j.combustflame.2018.05.007
    [3] MCMANUS K R, POINSOT T, CANDEL S M. A review of active control of combustion instabilities[J]. Progress in Energy and Combustion Science, 1993, 19(1): 1-29. doi: 10.1016/0360-1285(93)90020-F
    [4] YI E Y, BAE M J. On a fire extinguisher using sound winds[J]. Journal of Engineering and Applied Sciences, 2018, 13(4): 977-980.
    [5] BEISNER E, WIGGINS N D, YUE K B, et al. Acoustic flame suppression mechanics in a microgravity environment[J]. Microgravity Science and Technology, 2015, 27(3): 141-144. doi: 10.1007/s12217-015-9422-4
    [6] CHEN S, ZHAO D, LI H K H, et al. Numerical study of dynamic response of a jet diffusion flame to standing waves in a longitudinal tube[J]. Applied Thermal Engineering, 2017, 112: 1070-1082. doi: 10.1016/j.applthermaleng.2016.10.152
    [7] HAUSER M, LORENZ M, SATTELMAYER T. Influence of transversal acoustic excitation of the burner approach flow on the flame structure[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(4): 803-812.
    [8] DAVIS M R, LIN L H. Structures induced by periodic acoustic excitation of a diffusion flame[J]. Combustion and Flame, 1995, 103(3): 151-160. doi: 10.1016/0010-2180(95)00050-G
    [9] KIM K T, LEE J G, QUAY B D, et al. Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations[J]. Combustion and Flame, 2010, 157(9): 1731-1744. doi: 10.1016/j.combustflame.2010.04.006
    [10] DEMARE D, BAILLOT F. Acoustic enhancement of combustion in lifted nonpremixed jet flames[J]. Combustion and Flame, 2004, 139(4): 312-328. doi: 10.1016/j.combustflame.2004.09.004
    [11] FACHINI F F. Transient effects in the droplet combustion process in an acoustically perturbed high temperature environment[J]. Combustion Science and Technology, 1998, 139(1): 173-189. doi: 10.1080/00102209808952086
    [12] OKAI K, MORIUE O, ARAKI M, et al. Combustion of single droplets and droplet pairs in a vibrating field under microgravity[J]. Proceedings of the Combustion Institute, 2000, 28(1): 977-983. doi: 10.1016/S0082-0784(00)80304-5
    [13] KIM J S, WILLIAMS F A. Contribution of strained diffusion flames to acoustic pressure response[J]. Combustion and Flame, 1994, 98(3): 279-299. doi: 10.1016/0010-2180(94)90242-9
    [14] CANDEL S. Combustion dynamics and control: Progress and challenges[J]. Proceedings of the Combustion Institute, 2002, 29(1): 1-28. doi: 10.1016/S1540-7489(02)80007-4
    [15] DARPA. Instant flame suppression phase Ⅱ − final report[R]. [S.l.]: Defense Advanced Research Projects Agency, 2008.
    [16] FRIEDMAN A N, STOLIAROV S I. Acoustic extinction of laminar line-flames[J]. Fire Safety Journal, 2017, 93: 102-113. doi: 10.1016/j.firesaf.2017.09.002
    [17] XIONG C Y, LIU Y H, XU C S, et al. Extinguishing the dripping flame by acoustic wave[J]. Fire Safety Journal, 2021, 120: 103109.1-103109.9. doi: 10.1016/j.firesaf.2020.103109
    [18] 刘长春,刘新磊,周莎莎,等. 火焰脉动在火灾领域相关研究进展[J]. 中国安全生产科学技术,2018,14(3): 48-56. doi: 10.11731/j.issn.1673-193x.2018.03.007

    LIU Changchun, LIU Xinlei, ZHOU Shasha, et al. Research progress on flame pulsation in fire field[J]. Journal of Safety Science and Technology, 2018, 14(3): 48-56. doi: 10.11731/j.issn.1673-193x.2018.03.007
    [19] HU L H, HU J J, DE RIS J L. Flame necking-in and instability characterization in small and medium pool fires with different lip heights[J]. Combustion and Flame, 2015, 162(4): 1095-1103. doi: 10.1016/j.combustflame.2014.10.001
    [20] 史学强,张玉涛,张园勃,等. 低频声波激励下乙醇池火燃烧特性研究[J]. 工程热物理学报,2022,43(3): 830-839.

    SHI Xueqiang, ZHANG Yutao, ZHANG Yuanbo, et al. Combustion characteristics of an ethanol pool fire perturbed by low-frequency acoustic waves[J]. Journal of Engineering Thermophysics, 2022, 43(3): 830-839.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  154
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-01
  • 修回日期:  2021-05-05
  • 网络出版日期:  2022-08-13
  • 刊出日期:  2021-09-08

目录

    /

    返回文章
    返回