首页 | 官方网站   微博 | 高级检索  
     

高速公路超高过渡段几何线形对小型客车滑水速度的影响
引用本文:贾兴利,陈星澎,黄平明,马庆伟,李双庆,燕孟华.高速公路超高过渡段几何线形对小型客车滑水速度的影响[J].交通运输工程学报,2022,22(4):140-147.
作者姓名:贾兴利  陈星澎  黄平明  马庆伟  李双庆  燕孟华
作者单位:1.长安大学 公路学院,陕西 西安 7100642.陕西交通控股集团有限公司 西安公路研究院有限公司,陕西 西安 7100653.威斯康星大学-麦迪逊分校 工程学院,威斯康星 麦迪逊 WI 53706
基金项目:国家重点研发计划2020YFC1512003国家重点研发计划2021YFB2600403陕西省自然科学基础研究计划2020JM-260
摘    要:为了揭示高速公路不同超高过渡段线形指标下小型客车滑水速度变化规律,考虑小型客车滑水过程轮胎受力特征,分析了滑水速度与水膜厚度和超高过渡段几何线形的作用关系;应用多元线性回归和流体力学仿真建立了高速公路超高过渡段小型客车滑水速度量化模型,计算了降雨强度、纵坡坡度、超高渐变率等多变量组合下的小型客车临界滑水速度;以典型双向四车道高速公路超高过渡段为例,分析了降雨强度、纵坡坡度、超高渐变率对小型客车滑水速度的影响规律,并给出了超高过渡段小型客车限制速度建议值。研究结果表明:小型客车滑水速度最大值出现在纵坡坡度为0.3%、超高渐变率为1/200、降雨强度为20 mm·h-1组合工况下,为115.5 km·h-1,滑水速度最小值出现在纵坡坡度为3.0%、超高渐变率为1/330、降雨强度为80 mm·h-1组合工况下,为99.3 km·h-1;在降雨强度和超高渐变率一定的情况下,随着纵坡坡度增大,滑水速度逐渐减小,当纵坡坡度由0.3%增加到3.0%时,滑水速度减小2.68%;在降雨强度和纵坡坡度一定条件下,随着超高渐变率增大,滑水速度逐渐增大,当超高渐变率从1/330增加到1/200时,滑水速度上升了2.25%;增加纵坡坡度会降低滑水速度,但当降雨强度增加到一定程度,纵坡坡度、超高渐变率对滑水速度的影响趋于平缓;当降雨强度为20~80 mm·h-1时,双向四车道高速公路限速建议值为95.0~115.0 km·h-1,但不应大于其设计速度。 

关 键 词:道路工程    高速公路    超高过渡段    滑水速度    流体力学仿真    极差分析    水膜厚度
收稿时间:2022-03-21

Influence of geometric alignment of expressway superelevation transition section on hydroplaning speed of minibus
JIA Xing-li,CHEN Xing-peng,HUANG Ping-ming,MA Qing-wei,LI Shuang-qing,YAN Meng-hua.Influence of geometric alignment of expressway superelevation transition section on hydroplaning speed of minibus[J].Journal of Traffic and Transportation Engineering,2022,22(4):140-147.
Authors:JIA Xing-li  CHEN Xing-peng  HUANG Ping-ming  MA Qing-wei  LI Shuang-qing  YAN Meng-hua
Affiliation:1.School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China2.Xi'an Highway Research Institute Co., Ltd., Shaanxi Transportation Holding Group Co., Ltd., Xi'an 710065, Shaanxi, China3.College of Engineering, University of Wisconsin-Madison, Madison WI 53706, Wisconsin, USA
Abstract:In order to reveal the change laws of hydroplaning speed of minibus under different geometrical alignment factors at expressway superelevation transition section, the relationships among hydroplaning speed, water film thickness and superelevation transition geometric alignment factors were analyzed according to the tire force characteristics of minibus during hydroplaning process. Based on the multivariate linear regression and fluid simulation, a quantitative model of hydroplaning speed of minibus at superelevation transition section was established. Combined the rainfall intensity, longitudinal slope and superelevation transition rate, the critical hydroplaning speed of minibus was calculated. Taking the superelevation transition section of a typical four-lane expressway as an example, the influence law of rainfall intensity, longitudinal slope and superelevation transition rate on the hydroplaning speed of minibus was studied, and the recommended limit speed value at superelevation transition section was given. Research results show that the maximum value of hydroplaning speed of minibus is 115.5 km·h-1 under the combination of longitudinal slope of 0.3%, superelevation transition rate of 1/200 and rainfall intensity of 20 mm·h-1, and the minimum value of hydroplaning speed of minibus is 99.3 km·h-1under the combination of longitudinal slope of 3.0%, superelevation transition rate of 1/330 and rainfall intensity of 80 mm·h-1. Under the condition that rainfall intensity and superelevation transition rate are certain, the hydroplaning speed decreases gradually with the increase of longitudinal slope, and decreases by 2.68% when the longitudinal slope increases from 0.3% to 3.0%. Under the condition that the rainfall intensity and longitudinal slope are certain, the hydroplaning speed increases gradually with the increase of superelevation transition rate, and increases by 2.25% when the superelevation transition rate increases from 1/330 to 1/200. Increasing the longitudinal slope can reduce hydroplaning speed. However, when the rainfall intensity increases to a certain degree, the influence of longitudinal slope and superelevation transition rate on the hydroplaning speed tends to be flat. When the rainfall intensity is 20-80 mm·h-1, the recommended limit speed is 95.0-115.0 km·h-1, but not greater than the design speed. 
Keywords:
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号