首页 | 官方网站   微博 | 高级检索  
     

基于台架仿真模型的高速列车齿轮箱轴承动载荷获取方法
引用本文:豆硕,刘志明,李强,任尊松,杨广雪.基于台架仿真模型的高速列车齿轮箱轴承动载荷获取方法[J].交通运输工程学报,2022,22(2):219-232.
作者姓名:豆硕  刘志明  李强  任尊松  杨广雪
作者单位:北京交通大学 机械与电子控制工程学院,北京 100044
基金项目:国家自然科学基金项目11790281
摘    要:为获取高速列车齿轮箱轴承在服役振动环境下的动载荷,由动力学软件SIMPACK建立了某型高速列车齿轮箱台架仿真模型;基于谱修正的多点相干随机振动控制算法,通过虚拟激振器施加纵向、横向、垂向的轴箱实测加速度功率谱,再现了齿轮箱受到的多点相干线路激励;通过台架仿真模型获取了齿轮箱输入轴电机侧圆柱滚子轴承在服役振动环境下的轴承径向载荷、轴承中心轨迹和滚子与外圈滚道接触载荷。研究结果表明:通过谱修正控制算法,在优化速度指数为0.3,进行10次迭代后,轴箱的仿真与实测加速度功率谱相对误差趋于稳定,最大相对误差小于10%;不同的电机输入扭矩下,有无线路激励齿轮箱轴承动载荷表明,电机输入扭矩决定了齿轮箱轴承动载荷均值,而线路激励是齿轮箱轴承动载荷波动的主要原因;频谱分析显示,线路激励增大了轴承径向载荷在中低频带与齿轮啮合频率处的能量;同时线路激励增大了滚子与外圈滚道接触载荷,但是接触载荷的接触区和均值无明显变化;当无线路激励时,轴承中心轨迹沿齿轮的压力角振动,与垂直轴夹角为26°;线路激励使轴承中心轨迹波动范围更大、更随机,在方向上没有明显特征。可见,电机输入扭矩和线路激励是高速列车齿轮箱轴承动载荷的主要来源,台架仿真模型可为高速列车齿轮箱轴承动响应评估和载荷谱建立提供有价值的参考。 

关 键 词:车辆工程    齿轮箱    台架仿真模型    谱修正    随机振动控制    轴承动载荷
收稿时间:2021-11-27

Acquisition method of dynamic load of high-speed train gearbox bearing based on bench simulation model
DOU Shuo,LIU Zhi-ming,LI Qiang,REN Zun-song,YANG Guang-xue.Acquisition method of dynamic load of high-speed train gearbox bearing based on bench simulation model[J].Journal of Traffic and Transportation Engineering,2022,22(2):219-232.
Authors:DOU Shuo  LIU Zhi-ming  LI Qiang  REN Zun-song  YANG Guang-xue
Affiliation:School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
Abstract:To acquire the dynamic loads of gearbox bearings for high-speed trains under the operational vibration environment, a bench simulation model for the gearbox of a high-speed train was built using the dynamics software SIMPACK. The multi-point coherent random vibration control algorithm based on the spectrum correction was used to reproduce the multi-point coherent line excitation on the gearbox by applying the longitudinal, lateral, and vertical measured acceleration power spectra of the axle box with a virtual exciter. Moreover, for the cylindrical roller bearing on the motor side of the gearbox input shaft, the bench simulation model was employed to obtain its radial load and center trajectory and the contact load between the roller and outer ring raceway under the operational vibration environment. Analysis results indicate that by the control algorithm based on the spectrum correction, when the optimization speed index is 0.3, the relative error between the simulated and measured acceleration power spectra of the axle box tends to be stable after 10 iterations, and the maximum relative error is less than 10%. Under different input torques of motors, the dynamic loads of gearbox bearings with and without line excitation show that the input torque of motors determines the mean of the dynamic loads, and line excitation is the main reason for the fluctuation in the dynamic loads. The spectrum analysis reveals that the line excitation increases the energy of the radial load of the bearing in the middle and low frequency bands and gear meshing frequency. Meanwhile, the line excitation increases the contact load between the roller and the outer ring raceway, but the contact area and mean of the contact load have no significant change. When there is no line excitation, the trajectory of the bearing center vibrates along the pressure angle of gears, and the angle with the vertical axis is 26°. The line excitation makes the fluctuation range of the trajectory of the bearing center larger and more random, and no obvious characteristic is shown in any direction. So, the input torque of motors and line excitation are the main sources of the dynamic loads of gearbox bearings for high-speed trains, and the bench simulation model can provide a valuable reference for the dynamic response evaluation and load spectrum establishment of gearbox bearings for high-speed trains. 2 tabs, 20 figs, 28 refs. 
Keywords:
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号