首页 | 官方网站   微博 | 高级检索  
     

黏性场地列车荷载影响下衬砌半渗透边界盾构隧道诱发地表固结沉降解
引用本文:张治国,沈安鑫,徐晨,马少坤,PAN Y T,蒋康明.黏性场地列车荷载影响下衬砌半渗透边界盾构隧道诱发地表固结沉降解[J].中国公路学报,2022,35(5):116-127.
作者姓名:张治国  沈安鑫  徐晨  马少坤  PAN Y T  蒋康明
作者单位:1. 上海理工大学环境与建筑学院, 上海 200093;2. 广西大学土木建筑工程学院, 广西 南宁 530004;3. 同济大学地下建筑与工程系, 上海 200092;4. 新加坡国立大学土木与环境工程系, 新加坡 119077;5. 自然资源部丘陵山地地质灾害防治重点实验室, 福建省地质灾害重点实验室, 福建 福州 350002
基金项目:国家自然科学基金项目(41772331,41977247,42177145);自然资源部丘陵山地地质灾害防治重点实验室开放基金项目(FJKLGH2020K004)
摘    要:列车荷载作用下衬砌长期渗漏会显著影响软土盾构隧道周围土体的固结沉降,对邻近环境和地铁的安全运营造成不良影响。针对盾构隧道周围土体固结沉降的既有理论研究一般多考虑衬砌不透水条件,较少考虑衬砌渗漏水及列车荷载耦合作用对于地层固结沉降的影响。引入隧道衬砌半渗透边界和列车三角形循环时效荷载,基于Terzaghi-Rendulic固结理论,采用Boltzmann三元件模型模拟土体流变效应,推导了列车荷载作用下黏弹性地层盾构隧道渗漏水诱发的土体超孔隙水压力消散和地表固结沉降的复变函数解析表达式,并与6个工程实测数据进行对比,验证了所给出解析解的正确性与适用性。此外,通过参数分析讨论了衬砌-土体渗透比和列车荷载参数对土体固结沉降的影响。结果表明:衬砌-土体渗透比是影响盾构扰动地层固结快慢的主要影响因素,衬砌-土体渗透比越大,固结完成时间越早;列车荷载作用下,早期固结沉降速率相较于不考虑列车荷载时会有较明显的增加,但在列车荷载当量增加后,固结沉降速率的增长有所放缓,且其增量与衬砌-土体渗透比密切相关,衬砌-土体渗透比越大,沉降增加量则越大;隧道衬砌可以视为扰动地层的排水边界,其加速了土体固结沉降,而列车荷载与衬砌半渗透性耦合,进一步改变了土体固结沉降形态。

关 键 词:隧道工程  黏性地层  渗漏水  列车荷载  固结沉降  复变函数映射  
收稿时间:2020-10-03

Analytical Solution for Surface Consolidation Settlements Induced by Shield Tunneling with Semi-permeable Boundary Conditions Under Train Loading in Viscous Field
ZHANG Zhi-guo,SHEN An-xin,XU Chen,MA Shao-kun,PAN Y T,JIANG Kang-ming.Analytical Solution for Surface Consolidation Settlements Induced by Shield Tunneling with Semi-permeable Boundary Conditions Under Train Loading in Viscous Field[J].China Journal of Highway and Transport,2022,35(5):116-127.
Authors:ZHANG Zhi-guo  SHEN An-xin  XU Chen  MA Shao-kun  PAN Y T  JIANG Kang-ming
Abstract:The long-term leakage of tunnel lining under the action of train loading can significantly change the consolidation settlements of soft soils around the shield tunnel, which may adversely affect the surrounding environment and safe operation of the subway. Currently, the impermeable condition of the lining is usually used to analyze the consolidation settlements of soils around a shield tunnel. However, the coupled influences of lining leakage and train loading on the consolidation settlements have been rarely considered. Using the semi-permeable boundary of tunnel lining and the triangle cyclic time-dependent loading of the train, considering the Terzaghi-Rendulic consolidation theory, the Boltzmann viscoelastic model was employed to simulate the rheological characteristics of the soils; the conformal mapping in complex variable theory was used to derive the dissipation solution of excess pore water pressure and the surface consolidation settlement under train loading in viscoelastic soils. Furthermore, the analytical solutions were verified using observation data from six project cases. Finally, a detailed sensitivity analysis was performed between the influence of the soil-lining permeability and the train loading on the surface consolidation settlement. In this study, the accuracy and applicability of the analytical solution were verified based on the comparison of the measured data of the six projects. The results showed that the lining-to-soil permeability ratio was the primary factor affecting the rate of consolidation of the soils; the greater the lining-to-soil permeability ratio, the sooner the consolidation is completed. Upon applying the train loading, the consolidation settlement rate increases significantly compared with that without the train loading. However, further increase in the train loading does not increase the consolidation settlement rate significantly. This increment is closely related to the lining-to-soil permeability ratio; the larger the lining-to-soil permeability ratio, the larger the consolidation settlement. The tunnel lining can be regarded as the drainage boundary of disturbed stratum; it accelerates the consolidation settlement of soils. While the train load and lining semi-permeability are coupled, they further change the style of consolidation settlement of soils.
Keywords:tunnel engineering  viscous soil  leakage  train loading  consolidation settlement  conformal mapping in complex variable theory  
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号