首页 | 官方网站   微博 | 高级检索  
     

高海拔公路隧道火灾烟气控制临界风速研究
引用本文:王峰,张路华,袁松,周科,王宇.高海拔公路隧道火灾烟气控制临界风速研究[J].中国公路学报,2022,35(5):153-160.
作者姓名:王峰  张路华  袁松  周科  王宇
作者单位:1. 西南交通大学交通隧道工程教育部重点实验室, 四川 成都 610031;2. 西南交通大学土木工程学院, 四川 成都 610031;3. 四川省交通勘察设计研究院有限公司, 四川 成都 610017
基金项目:国家自然科学基金项目(52078429,51678493);四川省科技计划项目(2020YFS0290);四川省交通运输科技项目(2019-ZL-12);中央高校基本科研业务费专项资金项目(2682018CX02)
摘    要:为了探究高海拔与低海拔公路隧道火灾燃烧特性的差异,掌握高海拔隧道火灾烟气控制临界风速计算方法,给高海拔隧道防灾通风及人员疏散设计提供参考,建立1∶16的缩尺寸移动式水平模型隧道试验台,对海拔高度为504、3 297、3 544、4 103、4 446 m的5个地点开展隧道火灾热释放率试验研究,并采用三维数值计算方法和量纲分析,对不同海拔高度、不同火灾热释放率工况下水平隧道内烟气控制临界风速进行研究和分析。结果表明:在油盘尺寸相同的情况下,随着海拔高度的增加,火灾热释放率明显减小,燃烧时间显著增长,当海拔超过3 000 m时,高海拔地区隧道稳定段火灾热释放率仅为海拔504 m隧道火灾稳定段热释放率的60.9%。隧道火灾临界风速随着海拔高度的增加而增大,其表现出2种典型变化规律:火灾热释放率大于30 MW时,海拔高度对临界风速影响较小,同一火灾热释放率下,海拔5 000 m时隧道内临界风速较海拔0 m时提高了不到2%;火灾热释放率小于30 MW时,海拔高度对临界风速的影响显著增强,且随着热释放率的减小影响不断增大,当火灾热释放率分别为5.73、12.67 MW时,海拔5 000 m隧道内临界风速较海拔0 m时分别提高了26%和13%。基于高海拔隧道火灾热释放率及隧道火灾临界风速的变化规律,提出了典型双车道高海拔隧道火灾烟气控制临界风速的计算方法。

关 键 词:隧道工程  临界风速  现场模型试验  隧道火灾  高海拔  
收稿时间:2020-10-06

Critical Velocity of Fire Smoke Control in High-altitude Highway Tunnels
WANG Feng,ZHANG Lu-hua,YUAN Song,ZHOU Ke,WANG Yu.Critical Velocity of Fire Smoke Control in High-altitude Highway Tunnels[J].China Journal of Highway and Transport,2022,35(5):153-160.
Authors:WANG Feng  ZHANG Lu-hua  YUAN Song  ZHOU Ke  WANG Yu
Affiliation:1. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China;2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China;3. Sichuan Communication Surveying & Design Institute Co. Ltd., Chengdu 610017, Sichuan, China
Abstract:This study was conducted to evaluate the differences in the characteristics of high- and low-altitude highway tunnel fires, develop a method for calculating the critical velocity for high-altitude tunnel fire-smoke control, and provide a reference for the fire ventilation design and evacuation design of high-altitude tunnels. A test platform for the mobile horizontal model tunnel fires with a scale ratio of 1:16 was used to determine the heat release rates of the fires at altitudes of 504, 3 297, 3 544, 4 103, and 4 446 m. Three-dimensional numerical calculations and dimensional analyses were performed to investigate the critical velocity of fire in horizontal tunnels at different altitudes and fire scales. The results show that as the altitude increases, the fire heat release rate of the tunnel decreases significantly, and the burning time significantly increases when they have the same volume. When the altitude exceeds 3 000 m, the steady-fire heat release rate of the high-altitude tunnel is only 60.9% of that at an altitude of 504 m. The critical velocity of a tunnel fire increases with increasing altitude, showing two typical changes. When the fire heat release rate exceeds 30 MW, the altitude slightly influences the critical velocity. The critical velocity of the tunnel at a 5 000 m altitude is higher than that at a 0 m altitude by 2% for the same fire heat release rate. When the fire heat release rate is lower than 30 MW, the altitude significantly impacts the critical velocity, and the critical velocity continues to increase as the heat release rate decreases. When the fire heat release rates are 5.73 and 12.67 MW, the critical wind speeds in the tunnel at 5 000 m are 26% and 13% higher than that at 0 m, respectively. Based on the variations in the fire heat release rate and critical velocity for high-altitude tunnels, a method for calculating the critical velocity of a typical two-lane high-altitude tunnel fire smoke control is proposed.
Keywords:tunnel engineering  critical velocity  field model test  tunnel fire  high altitude  
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号