

隧道半刚性基层沥青路面沥青层疲劳开裂影响因素研究

王伟力1 唐中华1 孔令云2 黄 方3

(1. 浙江交投高速公路建设管理有限公司 杭州 310000; 2. 重庆交通大学 重庆 400074;3. 中国市政工程中南设计研究总院有限公司 武汉 430010)

[摘 要]通过建立隧道半刚性基层沥青路面有限元模型,对隧道内半刚性基层(预设横向贯通裂缝)沥青路面 沥青层疲劳开裂进行研究,研究表明对于隧道内半刚性基层沥青路面,由于沥青层内最大拉应变显著大于沥青层底拉 应变,导致沥青层内的疲劳寿命远小于沥青层底的疲劳寿命。沥青层层底疲劳开裂寿命影响因素敏感性排序为:基层 模量>面层模量~面层厚度>基层厚度。基层模量越大、基层厚度越厚、沥青面层模量越小对沥青面层疲劳开裂寿命越 有利。

[关键词] 隧道; 沥青路面; 疲劳开裂; 有限元模型

1 引言

在已建成的公路隧道中,路面结构型式主 要有水泥路面、复合式路面(水泥路面+沥青路 面)及少量的半刚性基层沥青路面三种类型。 在隧道外一般路基段上,设计人员普遍采用半 刚性基层沥青路面,若隧道内选择半刚性基层 沥青路面,在可适应重交通或特重交通要求的 同时,隧道内外路面型式相同,施工简便,可 以节省人力物力。

查阅文献发现,意大利勃朗峰隧道、奥地 利托恩隧道和 Arberg 隧道,路面型式为沥青混 凝土路面^[1]。克罗地亚隧道为半刚性基层沥青 路面,其沥青层厚度为 20-24cm,上面层为 SMA,基层为 20cm 的水泥稳定碎石。Lytton, Shanmughan 和 Garrent 等人^[2]研究反射裂缝时应 用 Paris 疲劳公式提出了新的预估模型。Doh, YoungS.^[3]利用数值化的疲劳寿命预估模型对比 分析了不同沥青层抑制反射裂缝的能力。王雪 莲等人^[4]通过离散元软件对半刚性基层路面抗 反射裂缝进行了研究,认为设置 LSPM 有利于防 止反射裂缝的扩展。栾利强^[5]依据疲劳断裂力 学理论对半刚性基层沥青路面疲劳裂缝的扩展 与寿命预估进行了深入分析,认为偏荷载是诱 发横向裂缝的主因,面层整体模量和轴载增大, 疲劳寿命减小,并且考虑了多因素回归得到疲 劳寿命预估方程。夏蕊芳^[6]建立预设贯通裂缝 的半刚性基层路面有限元模型,考虑了温度、 交通荷载的影响,认为偏荷载是导致反射裂缝 的主要原因,温度应力可抵消部分应力强度因 子。

本文依托"浙江建金高速公路隧道路面结 构优化研究"项目,对隧道半刚性基层沥青路 面沥青层疲劳开裂影响因素进行研究,对隧道 路面结构型式选择和设计有着重要意义。

2 隧道半刚性基层沥青路面三维有限元模型的 建立

2.1 模型建立

采用有限元分析软件 ABAQUS 中 Standard 模块建立三维路面模型,路面模型尺寸为 $x \times y$ × $z = 3.5m \times 3m \times 10m$, x、y、z 轴分别代表道 路宽度方向、道路竖向(深度)以及行车方向。 边界条件设为:模型底面固定 U1、U2、U3(即 U1 = U2 = U3 = 0),模型纵向的左侧与右侧固定 U1(即 U1 = 0),模型纵向的前后两面固定 U3

收稿日期: 2021-07-01

作者简介:王伟力(1966-),男,正高级工程师,主要从事高速公路建设、养护管理工作。

• 浙江支孟科技 •

(即 U3=0)。各层结构网格划分均采用 C3D8R 单元,即八节点三维实体减缩积分单元。

「「甜理论

hulilum

隧道内半刚性基层沥青路面的计算模型: 路面宽度 W=3.5m; 对半刚性基层进行贯通裂 缝预设, 计算该条件下路面结构的应力应变响 应及疲劳寿命; 相对于预设裂缝位置, 加载模 式采用偏载方式。路面结构荷载采用 BZZ-100 标准轴载, 单轮接地压强为 0.7MPa。按照轮胎 接触面积等效的原则将车轮与地面接地形状简 化为矩形, 其长为 0.213m, 宽为 0.167m, 两轮 中心距为 0.1065m, 如图 1。

图 1 车轮与地面接地形状

图 2 三维模型及网格划分

对于路面结构网格的划分,具体设置为: 全局网格种子设为0.2,面层、基层按照0.0025 尺寸设置种子,荷载作用处种子按数量设为4, 模型横向和纵向采取渐变网格,局部网格划分 情况如图2。

2.2 计算点位的选取

根据《公路沥青路面设计规范》(JTG D50-2017)规定的计算点位要求,竖向位置与横向位置按图 3 所示^[7]。

2.3 正交试验设计

在路面结构力学分析中,影响力学响应的 参数主要是沥青层和基层的结构参数及材料参 数。因此,因素参数选取沥青层材料模量、沥 青层结构厚度、基层材料模量、基层结构厚度 共4个因素,各因素分别选取3个水平,按 《公路沥青路面设计规范》(JTG D50-2017)规 定材料参数取动态模量,选用正交表 L₉(3⁴) 进行正交试验,如表1、表2所示。

表1 材料参数因素水平

_	因素							
水平	基层模量	基层厚度	沥青层厚度	(20℃)沥青层				
	/MPa	/cm	/cm	模量/MPa				
1	18000	20	5	7500				
2	24000	30	10	10000				
3	28000	40	16	14000				

图 3 力学响应计算点位置

	因素					因素				
	基层		沥青层				基层		沥青层	
试验号	模量	厚度	厚度	(20°C)		试验号	模量	厚度	厚度	模量
	/MPa	/cm	/cm	模量/MPa			/MPa	∕cm	∕cm	∕MPa
	А	В	С	D			А	В	С	D
1	1	1	3	2		1	18000	20	16	10000
2	2	1	1	1	<u> </u>	2	24000	20	5	7500
3	3	1	2	3	~	3	28000	20	10	14000
4	1	2	2	1		4	18000	30	10	7500
5	2	2	3	3		5	24000	30	16	14000
6	3	2	1	2		6	28000	30	5	10000
7	1	3	1	3		7	18000	40	5	14000
8	2	3	2	2		8	24000	40	10	10000
9	3	3	3	1		9	28000	40	16	7500

表 2 路面结构正交试验设计

本文采用连续体系作为隧道半刚性基层路 面有限元分析的基本模型,其结构层位如表 3.3,由上到下分别为面层、基层、找平层和基 岩,泊松比取值参考《公路沥青路面设计规范》 (JTG D50-2017)。

表 3 结构层位示意表

编 号	层位	结构形式	动态模量 /MPa	泊松比
1	面层	改性沥青混凝土	7500-14000 (20°C)	0. 25
2	基层	水泥稳定类	18000-28000	0.25
3	找平层	C20 素混凝土	140000	0.2
4	基岩	基岩	240000	0.2

3 计算

3.1 隧道半刚性基层沥青路面沥青层沿行车方向应变响应

根据所建立的三维有限元模型,按照表 3 设计的正交试验表进行了模拟试验分析,根据 图 3 所示的 A、B、C、D 四个计算点位对路面 结构计算结果进行分析,沥青层层底沿行车方 向拉应变云图见图 4,沥青层层底沿行车方向拉 应变横向位置变化规律见图 5。

图 4 沥青层底拉应变最大值的横向位置

图 5 沥青层层底沿行车方向拉应变横向位置变化规律

由上图可以看出,对预设裂缝的隧道内半 刚性基层沥青路面,沥青层层底拉应变最大值 的横向位置为A点,即轮胎正下方中心点;因

• 浙江圭ā种技 •

此,后续仅分析最不利位置 A 点的力学响应、 疲劳寿命等。

3.2 垂直荷载作用下沥青层应变响应

「品础理论

在确定了A点为最大拉应变的横向位置后, 对沥青层拉应变最大值的竖向位置进行分析。 路面的拉应变云图如图6。

图 6 垂直荷载作用下行车方向拉应变

由上图可以看出,在垂直荷载作用下,轮 胎正下方处受到的沿行车方向的拉应变最大, 其次是轮胎内侧边缘处,两轮隙中间处受到的 拉应变较小。从沿行车方向(Z轴)看,在轮 胎接触正表面,产生了压应变,轮胎作用区前 后的区域产生了拉应变,但数值远小于轮胎正 下方作用区。从深度方向(Y轴)看,沥青层 内不同深度处既存在拉应变也存在压应变,需 要具体分析应变随深度方向的变化。

3.3 水平荷载与垂直荷载共同作用下沥青层应变响应

在水平荷载与垂直荷载共同作用下,对沥 青层拉应变进行分析。路面的拉应变云图如图 7。

图 7 水平荷载+垂直荷载作用下行车方向拉应变

由上图可以看出,在水平荷载和垂直荷载 共同作用下,轮胎接触面 Z 轴 (行车方向)正 方向区域表面受压,而另一侧 (预设裂缝处) 面层顶部受拉,这是裂缝发展的诱因之一。在 横向位置 A 点拉应变最大。

3.4 沥青层应变响应结果

根据建立的三维模型,按照表2设计的正 交试验表进行了模拟计算,各结构计算点位A 点的沥青层内沿行车方向最大拉应变值及出现 的深度、沥青层底拉应变结果见表4。

表 4 沥青层沿行车方向拉应变汇总

基质			沥青层		沥青层最大拉应变		
模量/MPa	厚度/mm	厚度/cm	(20℃) 模量/MPa	深度/cm	最大拉应变/με	拉应变/με	
18000	40	5	14000	5.00	5.86	5.86	
28000	30	5	10000	4.50	3.79	3.67	
24000	20	5	7500	4.25	5.82	5.37	
24000	40	10	10000	6.50	7.95	5.27	
18000	30	10	7500	6.50	11.26	7.57	
28000	20	10	14000	6.75	6.50	5.12	
28000	40	16	7500	7.25	13.59	3. 53	
24000	30	16	14000	8.00	6.98	4.18	
18000	20	16	10000	7.75	10.31	5.82	

• 浙江交易科技 •

4 隧道半刚性基层沥青路面沥青层疲劳开裂影 响因素分析

应变的累积是造成路面疲劳破坏的直接诱因,对于沥青混合料层疲劳开裂以采用沥青混 合料层内拉应变进行控制。路面结构模拟计算 得到的沥青层内最大拉应变及层底拉应变,代入《公路沥青路面设计规范》(JTG D50-2017)中的式(B.1.1-1)疲劳方程可计算得到各结构形式沥青层疲劳开裂的寿命,计算相关参数见表5,计算结果见表6。

表 5 半刚性基层沥青路面沥青层疲劳开裂寿命计算参数汇总

	达	素		考核指标					
基层		沥青层							
模量/MPa	厚度/cm	厚度/cm	模量/MPa	目标可靠度 β	季冻系数 ka	kb	kT1	FVA	
A	В	С	D						
18000	20	16	10000		1	0.707	1.4	65	
24000	20	5	7500		1	0.970	1.4	65	
28000	20	10	14000		1	0. 923	1.4	65	
18000	30	10	7500		1	0.906	1.4	65	
24000	30	16	14000	1.65	1	0.737	1.4	65	
28000	30	5	10000		1	0.972	1.4	65	
18000	40	5	14000		1	0.975	1.4	65	
24000	40	10	10000		1	0.913	1.4	65	
28000	40	16	7500		1	0.685	1.4	65	

1	CU (// H/Z)		ሳ ዛዛ ተርጉሙ		
试验号	沥青层底 疲劳寿命 /10 ⁶	沥青层最 大拉应变 对应疲劳 寿命/10 ⁶	最大打 出现深	立应变 《度/cm	
1	362, 590	176, 164	8	3	
2	1, 080, 823	781, 990	4.25		
3	461, 632	179, 872	6.75		
4	258, 527	53, 347	6.5		
5	827, 939	107, 950	8		
6	3, 119, 196	2, 731, 252	4.	5	
7	286, 733	286, 733	5		
8	696, 523	136, 103	6.5		
9	4, 024, 373	19, 133	7.25		
因素及水平	基层模量	基层厚度	面层模量	面层厚度	
Ι	907851	1905045	4486753	5363723	
Ш	2605284	4205662	1416682	4178309	
Ш	7605202	5007630	5214902	1576304	
极差	6, 697, 352	3, 102, 585	3, 798, 220	3, 787, 419	

丰6 沥善巨底疲费开刻寿命汇首

对于上表 I、Ⅱ、Ⅲ分别为各因素对应的 1、2、3水平下考核指标的和。

表6可以看出:由于沥青层内最大拉应变

显著大于沥青层底拉应变,从而导致沥青层内的疲劳寿命远小于沥青层底的疲劳寿命,即是说,隧道内半刚性基层沥青路面的沥青面层的疲劳开裂,其实发生在沥青结构层内。当沥青面层厚度在5~16cm变化时,沥青面层内行车方向疲劳开裂发生在竖向5~8cm范围内。

各因素不同水平的疲劳寿命和Ⅰ、Ⅱ、Ⅲ 的趋势图见图 8。

图 8 表明:

(1)正交试验结果的极差表征了对应因素 作用的大小,正交试验结果中,依据极差的大 小,可知各因素对沥青层疲劳开裂寿命影响依

(八方: 基层模重>面层模重≈面层厚度>基层厚 度,说明在隧道内半刚性基层沥青路面中,基 层的模量对沥青层底疲劳开裂寿命影响最大, 沥青面层的厚度与其模量的影响效果相当,基 层厚度的影响最小。

(2) 在计算取值范围内,基层模量越大、 基层厚度越厚、沥青面层模量越小越有利于延 长沥青面层疲劳开裂寿命。在沥青面层厚度为 10cm时,沥青层疲劳开裂寿命出现最小值。

(3)由基层模量因素对应的沥青层底疲劳 开裂寿命之和大小: I < II < II 可以判断,随着 沥青厚的增大,沥青层底疲劳开裂寿命在增大。

(4) 由各因素对应的Ⅰ、Ⅱ、Ⅲ值分析, 基层模量 28000MPa、基层厚度 40cm、沥青面层 厚度 16cm、沥青面层模量 7500MPa 结构组合的 沥青层底疲劳开裂寿命最优。

5 结论

本文通过建立有限元模型,对隧道内半刚 性基层(预设横向贯通裂缝)沥青路面沥青层 疲劳开裂进行研究,得出以下结论:

(1)由于沥青层内最大拉应变显著大于沥 青层底拉应变,从而导致沥青层内的疲劳寿命 远小于沥青层底的疲劳寿命。

(2) 沥青层层底疲劳开裂寿命影响因素敏

感性排序为:基层模量>面层模量≈面层厚度> 基层厚度。

(3)基层模量越大、基层厚度越厚、沥青 面层模量越小对沥青面层疲劳开裂寿命越有利。

(4) 基层模量 28000MPa、基层厚度 40cm、 沥青面层厚度 16cm、沥青面层模量 7500MPa 结 构组合的沥青层底疲劳开裂寿命最优。

参考文献

- [1] 谢建新.隧道连续配筋混凝土与沥青混凝土复合式路面结构研究[D].湖南大学,2009.
- [2] Lytton R L, Shanmugham U, Garrett B D. Design of Asphalt Pavement for Thermal Fatigue Cracking [J]. Cracking, 1983.
- [3] Doh, Young S. Estimation of relative performance of reinforced overlaid asphaltconcretes against reflection cracking due to bending more fracture. [C] //Construction and Building Materials. May 2009.
- [4] 王雪莲,黄晓明,卞国剑.LSPM 对防治半刚性基层沥青路面反射裂缝机理分析 [J].公路交通科技,2016 (7): 12-18.
- [5] 栾利强. 半刚性基层沥青路面疲劳裂缝扩展与寿命预估研究[J]. 土木工程学报, 2017 (09): 122-132.
- [6] 夏蕊芳.基于有限元分析法在半刚性基层路面反射裂缝的研究 [J].公路工程,2017,42 (03):18-25.
- [7]《公路沥青路面结构设计规范》(JTG D50-2017)[S]. 北京:人民交通出版社.2017.

尚江交易千技 ・