首页 | 官方网站   微博 | 高级检索  
     

泡沫铝压缩试验及等效仿真模型研究
引用本文:王佳铭,谭跃东,靳智慧,闫莉莹,纪程,李志刚,邵特立.泡沫铝压缩试验及等效仿真模型研究[J].西南交通大学学报,2023,58(1):91-99, 116.
作者姓名:王佳铭  谭跃东  靳智慧  闫莉莹  纪程  李志刚  邵特立
作者单位:1.北京交通大学机械与电子控制工程学院,北京1000442.大连机车车辆有限公司,辽宁 大连1160223.交控科技股份有限公司,北京100070
基金项目:中央高校基本科研业务费(2019JBM048);北京市自然科学基金-丰台轨道交通前沿研究联合基金(L201010)
摘    要:为了研究泡沫铝结构在直升机耐坠性设计中的应用效果,本文基于万能材料试验机和霍普金森压杆分别对两种相对密度的闭孔泡沫铝在准静态(0.001/s)和高应变率下(500/s、1 000/s)的力学性能进行了测试;然后,建立了可反映应变率效应的泡沫铝等效有限元模型;最后,将泡沫铝等效模型应用于直升机驾驶舱耐坠性的仿真中,分析了置入不同密度泡沫铝等效模型后直升机受到的冲击和变形情况.结果表明:泡沫铝的平台应力以及质量比吸能随相对密度、应变率的增加而增加,但密实化应变则相反;泡沫铝等效有限元模型与实验结果曲线保持一致,模型准确性较高;此外,通过置入两种密度的泡沫铝材料,驾驶舱地板的最大变形量分别减少了28%和73%,机身部件的承载压力平均减少了28%和42%,高密度泡沫铝承载能力更强,效果更好.

关 键 词:泡沫铝  应变率  相对密度  吸能  等效模型  直升机耐坠性
收稿时间:2021-07-20

Study on Compression Test and Equivalent Simulation Model of Aluminum Foam
WANG Jiaming,TAN Yuedong,JIN Zhihui,YAN Liying,JI Cheng,LI Zhigang,SHAO Teli.Study on Compression Test and Equivalent Simulation Model of Aluminum Foam[J].Journal of Southwest Jiaotong University,2023,58(1):91-99, 116.
Authors:WANG Jiaming  TAN Yuedong  JIN Zhihui  YAN Liying  JI Cheng  LI Zhigang  SHAO Teli
Affiliation:1.School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China2.Dalian Locomotive & Rolling Stock Co., Ltd., Dalian 116022, China3.Traffic Control Technology Co., Ltd., Beijing 100070, China
Abstract:In order to investigate the effectiveness of aluminum foam for helicopter crashworthiness design, the mechanical properties of closed cell aluminum foam with two relative densities were tested at quasi-static (0.001 /s) and high strain rates (500 /s, 1000 /s) based on universal testing machine and Hopkinson bar, respectively. An equivalent finite element (FE) model of aluminum foam which considers the strain rate was established. The developed equivalent model of the aluminum foam with different relative densities was applied to the dropping simulation of a helicopter FE model. The crushing level and the deformation of the helicopter were investigated. The results show that the platform stress and mass specific energy absorption increase with relative density and strain rate, but the opposite is true for densification strain. The equivalent finite element model has high accuracy whose response curve can keep consistent with the experimental results. In addition, the maximum deformation of the helicopter floor has been reduced by 28% and 73% and the load-bearing pressure on each component has been reduced by 28% and 42% on average as the aluminum foam with different relative densities was added into the bottom cockpit of the helicopter. The load carrying capacity of aluminum foam with high relative density is higher and more effective. 
Keywords:
点击此处可从《西南交通大学学报》浏览原始摘要信息
点击此处可从《西南交通大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号