首页 | 官方网站   微博 | 高级检索  
     

在役混凝土桥梁非平稳抗力劣化模型建立与更新
引用本文:袁阳光,陈笑,韩万水,谢青,王涛,唐龙龙.在役混凝土桥梁非平稳抗力劣化模型建立与更新[J].中国公路学报,2019,32(12):145-155.
作者姓名:袁阳光  陈笑  韩万水  谢青  王涛  唐龙龙
作者单位:1. 西安建筑科技大学 土木工程学院, 陕西 西安 710055;2. 长安大学 公路学院, 陕西 西安 710064;3. 中交第一航务工程勘察设计院有限公司, 天津 300222
基金项目:国家重点研发计划"综合交通运输与智能交通"重点专项2019年度定向项目(2019YFB1600702);国家自然科学基金项目(51878058);中央高校基本科研业务费专项资金项目(310821162008,310821173401,310821161025)
摘    要:为建立在役混凝土桥梁结构构件非平稳随机抗力劣化模型,并通过后验更新解决劣化模型与实际结构劣化特征的匹配问题,首先,联系在役混凝土桥梁结构实际劣化特征,基于Gamma随机过程推导并建立了初始抗力劣化模型,对初始模型所存在的问题进行探讨;其次,以初始模型吸收融合结构近期实际劣化状态为原则,以结构特定时刻劣化状态的确定为基础,构建了初始抗力劣化模型的后验更新流程;再次,联合非确定性层次分析法(NAHP)与实数遗传算法(RGA)建立了基于定期外观检测数据的特定时刻抗力劣化系数评定方法,为确保该评定方法为初始抗力劣化模型更新提供准确可靠的劣化数据,采用室内模型梁加载试验对所建立评定方法的准确性、适用性进行验证;最后,以一座在役25年的混凝土桥梁为例,基于所建立的分析方法框架,阐述了其一片内梁抗弯承载力劣化模型的建立与后验更新过程。结果发现:基于特定时刻抗力劣化系数评定方法所得到的劣化系数分析结果与试验值的误差介于2.83%~6.24%之间,由该方法所得到的特定时刻抗力劣化系数可应用于初始劣化模型的后验与更新,经过初始劣化模型的后验与更新,所得到的后验模型由于吸收了结构近期的实际劣化状态,在抗力劣化进程描述方面较初始模型具有更高的准确性和更好的匹配性。

关 键 词:桥梁工程  在役混凝土桥梁  非平稳随机抗力劣化模型  Gamma过程  后验更新  
收稿时间:2018-07-03

Establishment and Updating of Nonstationary Random Resistance Deterioration Model for Existing Concrete Bridges
YUAN Yang-guang,CHEN Xiao,HAN Wan-shui,XIE Qing,WANG Tao,TANG Long-long.Establishment and Updating of Nonstationary Random Resistance Deterioration Model for Existing Concrete Bridges[J].China Journal of Highway and Transport,2019,32(12):145-155.
Authors:YUAN Yang-guang  CHEN Xiao  HAN Wan-shui  XIE Qing  WANG Tao  TANG Long-long
Affiliation:1. School of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, Shaanxi, China;2. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China;3. CCCC First Harbor Consultants Co., Ltd, Tianjin 300222, China
Abstract:To solve the matching problem between a deterioration model and actual deterioration characteristics, a nonstationary resistance deterioration model of existing concrete bridges was established. Firstly, by considering the actual deterioration characteristics of an existing concrete bridge, a Gamma-process-based original deterioration model was established and its shortcomings were discussed. Secondly, based on the deterioration condition of the structure at a specific moment, an updating procedure for the original deterioration model incorporating recent deterioration conditions was provided. Thirdly, a physical-data-based evaluation method for determining the deterioration coefficient at a specific moment was developed using a nondeterministic analytical hierarchy process and a real-coded genetic algorithm. To ensure that the developed evaluation method could provide accurate deterioration data for resistance deterioration model updating, in-house loading tests on experimental beams were conducted to validate the accuracy and applicability of the developed evaluation method. Lastly, an existing concrete bridge was taken as a prototype bridge to conduct a case study in which the establishment and updating of the resistance deterioration model of an interior girder were illustrated based on the proposed framework. The results show that the relative error in the deterioration coefficient obtained from the evaluation method and loading tests ranges from 2.83% to 6.24%. The calculated deterioration coefficient determined by the developed evaluation method can be used in updating the original model. Compared with the original model, the updated resistance deterioration model is more accurate in describing the deterioration process because of the incorporation of recent actual deterioration conditions.
Keywords:bridge engineering  existing concrete bridge  nonstationary resistance deterioration model  Gamma process  model updating  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号