首页 | 官方网站   微博 | 高级检索  
     

桥塔遮风效应对移动列车气动参数及行车安全的影响
引用本文:李小珍,唐庆,吴金峰,毛小艺,肖军,王铭.桥塔遮风效应对移动列车气动参数及行车安全的影响[J].中国公路学报,2019,32(10):191-199.
作者姓名:李小珍  唐庆  吴金峰  毛小艺  肖军  王铭
作者单位:1. 西南交通大学 桥梁工程系, 四川 成都 610031;2. 西南交通大学 风工程四川省重点实验室, 四川 成都 610031;3. 中交第二公路工程局有限公司, 陕西 西安 710065
基金项目:国家自然科学基金项目(U1434205,51708465)
摘    要:为研究桥塔遮风效应对移动列车气动参数的影响,以沪通长江大桥这一钢桁梁斜拉桥为背景,基于移动列车模型试验装置,设计了缩尺比均为1:30的桁梁、桥塔和CRH3列车模型,依托XNJD-3风洞实验室进行了一系列试验。基于测试结果,分析列车通过桥塔区域时车速、风速以及合成风向角对列车气动参数的影响,并利用风-车-线-桥耦合振动模型分析了桥塔处气动参数突变对CRH3列车行车安全的影响。研究结果表明:桥塔遮风效应对移动列车影响显著,车辆气动参数在桥塔区域呈现突变的现象,升力系数和阻力系数经历了先减小后增大的过程,力矩系数则先增大后减小;风速越低,气动参数曲线在桥塔处的突变程度越大;气动参数曲线的突变宽度远大于桥塔自身的宽度,且车速越高突变宽度越大;合成风向角越小,列车气动参数在桥塔区域的变化越显著;列车离开桥塔区域时,桥塔尾流会造成升力系数和阻力系数局部增大;在考虑桥塔遮风效应的情况下,列车车体加速度在桥塔区域急剧增大,当列车远离桥塔区域时又逐渐减小;桥塔遮风效应会威胁列车的行车安全,未考虑桥塔遮风效应的分析结果是偏不安全的。

关 键 词:桥梁工程  气动参数  风洞试验  移动列车  行车安全  桥塔遮风效应  钢桁梁桥  
收稿时间:2019-01-05

Influence of the Bridge Tower Shielding Effect on Aerodynamic Parameters and Running Safety of Moving Train
LI Xiao-zhen,TANG Qing,WU Jin-feng,MAO Xiao-yi,XIAO Jun,WANG Ming.Influence of the Bridge Tower Shielding Effect on Aerodynamic Parameters and Running Safety of Moving Train[J].China Journal of Highway and Transport,2019,32(10):191-199.
Authors:LI Xiao-zhen  TANG Qing  WU Jin-feng  MAO Xiao-yi  XIAO Jun  WANG Ming
Affiliation:1. Department of Bridge Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China;2. Wind Engineering Key Laboratory of Sichuan Province, Southwest Jiaotong University, Chengdu 610031, Sichuan, China;3. CCCC Second Highway Engineering Co., Ltd., Xi'an 710065, Shaanxi, China
Abstract:To investigate the influence of the bridge tower shielding effect on aerodynamic parameters of a moving train, Hutong Yangze River Bridge, a steel truss cable-stayed bridge was selected as the engineering background. Based on a moving train model test device, the steel truss, bridge tower, and CRH3 train were constructed on a geometric scale ratio of 1:30. After that, a series of tests were conducted in the XNJD-3 wind tunnel laboratory. Based on the various cases tested, the impacts of train speeds, wind speeds, and yaw angles on aerodynamic parameters of the train were studied. Then, the wind-train-track-bridge coupling vibration model was used to analyze the effects of the mutation of the aerodynamic parameters in the tower region on the running safety of the CRH3 train. The results clearly show that the bridge tower shielding effect influences the moving train, and the aerodynamic parameters of the train change when it passes the wake of the bridge tower. Generally, when the train passes through the bridge tower, its lift and side coefficients show a downward-upward trend, while the rolling moment coefficient shows an upward-downward trend. In the tower region, the mutation amplitude is larger when the wind speed is lower. The mutation width on the aerodynamic parameter curves is much larger than the width of the bridge tower itself, and the mutation is wider when the train speed is higher. The impact of the bridge tower on the aerodynamic parameters of the train is more obvious with a smaller yaw angle. When the train leaves the bridge tower, its lift and side coefficients increase partly due to the wake of the bridge tower. Considering the bridge tower shielding effect, the train acceleration ascends rapidly in the tower region, while it descends gradually as the train goes farther from the bridge tower. The bridge tower shielding effect will pose a threat to the running safety of the train, while the analysis result will be unclear if the bridge tower shielding effect is not considered.
Keywords:bridge engineering  aerodynamic parameter  wind tunnel test  moving train  running safety  bridge tower shielding effect  steel truss bridge  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号