首页 | 官方网站   微博 | 高级检索  
     

黄土边坡原位直剪与抗滑桩模型试验
引用本文:张娟,李博融,曹升亮,李震.黄土边坡原位直剪与抗滑桩模型试验[J].中国公路学报,2019,32(8):35-48.
作者姓名:张娟  李博融  曹升亮  李震
作者单位:中交第一公路勘察设计研究院有限公司 陕西省公路交通防灾减灾重点实验室, 陕西 西安 710065
基金项目:陕西省自然科学基础研究计划项目(2017ZDJC-24);陕西省交通运输厅交通科研项目(16-18K);国家重大科学仪器设备开发专项(2017YFF0108705,2017YFF0108706)
摘    要:为揭示黄土公路高陡边坡的稳定性状,选取黄土塬开挖平台非扰动黄土为试样,制作试样模型进行原位试样直接剪切试验,设计进行不同工况下埋入式与悬臂式抗滑桩模型试验,研究获取公路路堑边坡黄土土样应力-应变关系曲线、土样峰值强度及残余强度参数变化规律,并基于支挡抗滑桩和黄土边坡坡体内受力与变形状态,揭示桩-土相互作用过程与变形机理。试验结果表明:黄土试样在直接剪切时,随着法向应力增大,其应力-应变关系曲线逐渐由软化型向硬化型转变,且曲线逐步升高但未出现交叠;相同的剪切次数下,黄土试样峰值强度和残余强度均随法向应力增大而增大,残余强度较峰值强度有一定衰减,且垂直强度愈大,衰减愈明显;随着水平推力达到极限承载力,埋入式模型抗滑桩桩身土压力分布呈现上大下小的变化趋势,且在滑动面位置上部附近出现桩前最大土压力,桩体发生弹性变形,弯矩值沿桩身分布总体呈"S"形规律;悬臂式桩体不发生刚性转动,桩身土压力总体呈上下小、中间大的分布态势,桩后最大土压力出现在滑动面附近,而桩前最大土压力则随着现场试验中单排模型桩根数增多,自模拟滑动面逐渐过渡到新的剪出滑动面,桩身弯矩呈"D"形分布。

关 键 词:道路工程  黄土  模型试验  直接剪切  峰值强度  残余强度  抗滑桩  
收稿时间:2018-11-10

Model Test of Vertical Shear and Anti-slide Pile in Situ on Loess Slope
ZHANG Juan,LI Bo-rong,CAO Sheng-liang,LI Zhen.Model Test of Vertical Shear and Anti-slide Pile in Situ on Loess Slope[J].China Journal of Highway and Transport,2019,32(8):35-48.
Authors:ZHANG Juan  LI Bo-rong  CAO Sheng-liang  LI Zhen
Affiliation:Shaanxi Key Laboratory of Road Disaster Prevention, CCCC First Highway Consultants Co., Ltd., Xi'an 710065, Shaanxi, China
Abstract:In order to reveal the stability of the high and steep slopes in the Loess Plateau, a model was made from intact loess, and in-situ direct shear tests were carried out. Further, the model tests of embedded and cantilevered anti-slide piles under different working conditions were designed. Through experiments, the stress-strain relationship curves, peak strength, and residual strength parameters of the loess soil samples from highway cutting slopes were obtained. Further, the process of pile-soil interaction and deformation mechanisms were revealed based on the stress and deformation state of the anti-slide piles and the slope body. The stress-strain curves of loess specimens show a gradual change from softening to hardening of the specimens. Moreover, the curves show a gradual increase with the increase of normal stress, but do not overlap. Moreover, with the same shear times, the peak strength and residual strength of the loess increase with the increase in normal stress. Compared with the peak strength, the residual strength is attenuated to a certain extent. The greater the vertical strength, the more obvious the attenuation was. With the horizontal thrust reaching the ultimate bearing capacity, the soil pressure value of the pile body in the embedded model gradually decreases from top to bottom, and the maximum earth pressure before the pile is found near the sliding surface. The elastic deformation of the anti-slide pile occurs, and the bending moment value along the pile body presents as an "S" type distribution. Furthermore, the cantilever pile has no rigid rotation, the soil pressure value of the pile body is larger in the middle, the maximum earth pressure is near the sliding surface, and the maximum earth pressure in front of the pile is gradually transferred to the new shear slide surface due to the increase in number of single-row model piles in the field test. The bending moment distribution of the pile body presents as a "D" type distribution.
Keywords:road engineering  loess  model test  direct shear  peak strength  residual strength  anti-slide pile  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号