首页 | 官方网站   微博 | 高级检索  
     

考虑燃料电池衰退的FCHEV反馈优化控制策略
引用本文:林歆悠,李雪凡,林海波.考虑燃料电池衰退的FCHEV反馈优化控制策略[J].中国公路学报,2019,32(5):153-161.
作者姓名:林歆悠  李雪凡  林海波
作者单位:1. 福州大学 机械工程及自动化学院, 福建 福州 350002;2. 福州大学 福建省高端装备制造协同创新中心, 福建 福州 350002
基金项目:国家自然科学基金项目(51505086);CAD/CAM福建省高校工程研究中心项目(K201710)
摘    要:为了提高插电式燃料电池混合动力汽车的经济性和燃料电池耐久性,在构建燃料电池衰退模型的基础上,制定等效氢气消耗最小(ECMS)的反馈优化控制策略。ECMS反馈优化控制策略中目标价值函数的等效氢气消耗除包括燃料电池氢气消耗和动力电池等效氢气消耗外,还将燃料电池开路电压衰退转化成等效的氢气消耗加入到目标价值函数之中,以电机需求功率P_m、动力电池SOC值为状态变量,动力电池目标功率为控制变量,取使目标价值函数最小的动力电池目标功率作为参考动力电池目标功率输出,并根据反馈的燃料电池电压衰退速率对燃料电池系统输出功率限制变化值ΔP_f进行动态调整,最终得到燃料电池目标功率。通过MATLAB/Simulink建立插电式燃料电池汽车前向仿真模型,采用城市道路循环(UDDS)工况进行验证。研究结果表明:相比基于规则的能量管理策略,电量保持(CS)阶段采用ECMS反馈优化控制策略,氢气消耗量降低2.6%,同时燃料电池的开路电压衰退降低4.1%,基于ECMS的反馈优化控制策略相比基于规则的能量管理策略在高效区间的工作点占比更高;与ΔP_f分别为1,2,3 kW时相比,采用燃料电池系统电压衰退速率反馈调节ΔP_f策略的氢气消耗量为0.105 3 kg,相比ΔP_f为1,2 kW的氢气消耗量(0.121 3,0.110 2 kg)有明显优化,接近ΔP_f为3 kW的氢气消耗量(0.102 9 kg),同时燃料电池电压衰退速率有明显的减小,整车经济性与燃料电池耐久性都得到了改善。

关 键 词:汽车工程  燃料电池衰退  反馈控制策略  等效氢气消耗最小
收稿时间:2018-01-05

Optimization Feedback Control Strategy Based ECMS for Plug-in FCHEV Considering Fuel Cell Decay
LIN Xin-you,LI Xue-fan,LIN Hai-bo.Optimization Feedback Control Strategy Based ECMS for Plug-in FCHEV Considering Fuel Cell Decay[J].China Journal of Highway and Transport,2019,32(5):153-161.
Authors:LIN Xin-you  LI Xue-fan  LIN Hai-bo
Affiliation:1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350002, Fujian, China;2. Collaborative Innovation Center of High-end Equipment Manufacturing in Fujian, Fuzhou University, Fuzhou 350002, Fujian, China
Abstract:To improve the economy of a plug-in hybrid fuel cell electric vehicle and the durability of the fuel cell, an equivalent hydrogen consumption minimization strategy (ECMS) was developed based on the fuel cell degradation model with feedback optimal control. In addition to the hydrogen consumption of the fuel cell and the equivalent hydrogen consumption of the battery, the open circuit voltage decay of the fuel cell was converted into the equivalent hydrogen consumption and added to the target cost function. The demand power of the motor, Pm, and the battery state of charge were considered as the state variables, and the target power of the battery was set as the control variable. The target power of the battery that minimizes the target cost function was regarded as the output reference target power of the battery. The limited variation value of the fuel cell output power ΔPf could be dynamically adjusted using the feedback of the voltage decay rate of the fuel cell. Finally, the target power of the fuel cell was obtained. The forward simulation model of the plug-in fuel cell vehicle was established on MATLAB/Simulink, and the driving cycle of the urban dynamometer driving schedule was used for verification. The simulation results show that the hydrogen consumption decreases by 2.6% and the open circuit voltage decay of the fuel cell decreases by 4.1% through the use of the ECMS with feedback control under the charge sustaining phase, as compared to the rule-based strategy. The working point in the high efficiency of the fuel cell has a higher proportion under the ECMS with feedback control strategy than that under the rule-based strategy. The hydrogen consumption for ΔPf with feedback control is 0.105 3 kg, and is similar with values of 0.102 9 kg for a fixed ΔPf value of 3 kW. For a fixed ΔPf values of 1kw and 2 kW, the hydrogen consumption significantly increases to 0.121 3 kg and 0.110 2 kg, respectively. Therefore, the fuel cell voltage decay rate is significantly reduced compared with that in the fixed ΔPf, and the vehicle economy and durability of fuel cell are improved.
Keywords:automotive engineering  fuel cell decay  feedback control strategy  ECMS  
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号