首页 | 官方网站   微博 | 高级检索  
     

强迫油循环风冷式牵引变压器的动态温度场模型
引用本文:王韬,张壮,赵康发,邵坤,游永华,易正明,贺铸,吴达.强迫油循环风冷式牵引变压器的动态温度场模型[J].西南交通大学学报,2022,57(5):976-981, 999.
作者姓名:王韬  张壮  赵康发  邵坤  游永华  易正明  贺铸  吴达
作者单位:1.中车株洲电机有限公司,湖南 株洲 4120012.武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,湖北 武汉 4300813.武汉科技大学高温材料与炉衬技术国家地方联合工程研究中心, 湖北 武汉 4300814.华北制药华胜有限公司,河北 石家庄 052160
基金项目:国家自然科学基金(51974211)
摘    要:牵引变压器散热涉及冷却油与绕组的共轭传热和热油在油冷却器的二次散热. 为准确模拟其温度场随时间和空间的变化规律,在一维假设基础上,建立了牵引变压器(含绕组和冷却油)和油冷却器的分布参数模型,并与油泵和管道等集中参数模型耦合,建立了牵引变压器动态温度场数学模型,同时提出了一套数值求解算法;对一台牵引变压器及其散热系统进行动态温升实验,以此检验了模型预测精度. 研究结果表明:模型预测的牵引变压器冷却油温过渡时间(58 min)与实验值(61 min)吻合良好,稳定工作的冷却油和绕组温度与实验值的偏差分别为1.3 ℃和2.5 ℃,可以用于指导牵引变压器散热系统的工程设计及优化. 

关 键 词:牵引变压器    动态温度场    分布参数    散热模型    数值求解    实验验证
收稿时间:2020-12-08

Numerical Modeling of Dynamic Temperature Field for Air-Cooling Traction Transformers with Forced Oil Circulation
WANG Tao,ZHANG Zhuang,ZHAO Kangfa,SHAO Kun,YOU Yonghua,YI Zhengming,HE Zhu,WU Da.Numerical Modeling of Dynamic Temperature Field for Air-Cooling Traction Transformers with Forced Oil Circulation[J].Journal of Southwest Jiaotong University,2022,57(5):976-981, 999.
Authors:WANG Tao  ZHANG Zhuang  ZHAO Kangfa  SHAO Kun  YOU Yonghua  YI Zhengming  HE Zhu  WU Da
Affiliation:1.CRRC Zhuzhou Electric Co., Ltd., Zhuzhou 412001, China2.Key Laboratory of Iron and Steel Metallurgy and Resource Utilization, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China3.National-Provincial Joint Engineering Research Center of High Temperature Materials and Lining Technology, Wuhan University of Science and Technology, Wuhan 430081, China4.North China Pharmaceutical Huasheng Co., Ltd., Shijiazhuang 052160, China
Abstract:The thermal dissipation of traction transformers is involved in the conjugate heat transfer between the cooling oil and windings along with the secondary heat release of the heated oil delivered to an oil cooler. To simulate the temporal and spatial temperature variations of traction transformers accurately, the distributed parameter models of traction transformer (including windings and oil) and oil cooler are set up based on the one-dimensional assumption, respectively. The two models are integrated with the lumped parameter ones of oil pump and pipelines. A mathematical model of dynamic temperature field is obtained for the traction transformers. Besides, an iteration algorithm is proposed for the numerical solution. For model validation, a temperature rise experiment is performed on a traction transformer and its cooling system. The results show that the transition time for a stable transformer oil temperature obtained by current model (58 min) meets well with experimental measurement (61 min). The predicted average temperatures of oil and windings under the stable running condition take the discrepancies of 1.3 ℃ and 2.5 ℃ against experimental counterparts, respectively. The current work can be used for the optimal design of traction transformers.  
Keywords:
点击此处可从《西南交通大学学报》浏览原始摘要信息
点击此处可从《西南交通大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号