首页 | 官方网站   微博 | 高级检索  
     

发泡条件对基质沥青发泡膨胀率的影响
引用本文:韩跃杰,丁智勇,吴优,李俊.发泡条件对基质沥青发泡膨胀率的影响[J].交通运输工程学报,2019,19(3):19-26.
作者姓名:韩跃杰  丁智勇  吴优  李俊
作者单位:长安大学特殊地区公路工程教育部重点实验室,陕西西安,710064;长安大学道路施工技术与装备教育部重点实验室,陕西西安,710064
基金项目:国家重点研发计划项目2016YFC0802208
摘    要:通过建模软件Solidworks对沥青发生装置进行三维建模, 采用有限元仿真软件Fluent分析了不同参数条件下基质沥青的发泡过程, 并对比了试验结果和仿真结果, 分析了应用有限元仿真技术研究基质沥青发泡膨胀率的可靠性; 对发泡腔和发泡腔内各流体材料进行有限元仿真, 利用Fluent中的后处理功能得到了发泡腔的温度、速度、压力和各相的分布云图。仿真结果表明: 在整个发泡过程中, 基质沥青温度的增大使沥青黏度下降, 发泡腔内水蒸汽增加, 当基质沥青温度从120℃升高到160℃时, 基质沥青的发泡膨胀率从4增大到11, 说明基质沥青温度的变化对其发泡膨胀率的影响很大; 基质沥青流量的增大起到增加发泡腔内基质沥青总量和减少基质沥青之间相互接触时间和接触面积的作用, 当基质沥青入口流量从60 g·s-1增大到120 g·s-1时, 基质沥青的发泡膨胀率为7~11, 表明基质沥青流量的变化对其发泡膨胀率的影响很大; 当用水量从2.0%增大到3.5%时, 基质沥青的发泡膨胀率基本不变, 说明用水量对基质沥青发泡膨胀率的影响不大; 仿真得到的最低发泡膨胀率为3.57, 此时发泡条件参数分别是基质沥青流量为120 g·s-1, 基质沥青温度为120℃, 发泡用水量为3.0%。 

关 键 词:路面工程  基质沥青  发泡腔  分布云图  发泡膨胀率  用水量
收稿时间:2018-12-08

Influence of foam condition on foam expansion rate of base asphalt
HAN Yue-jie,DING Zhi-yong,WU You,LI Jun.Influence of foam condition on foam expansion rate of base asphalt[J].Journal of Traffic and Transportation Engineering,2019,19(3):19-26.
Authors:HAN Yue-jie  DING Zhi-yong  WU You  LI Jun
Affiliation:1.Key Laboratory of Special Region Highway Projects of Ministry of Education, Chang'an University, Xi'an 710064, Shaanxi, China2.Key Laboratory of Road Construction Technology and Equipment of Ministry of Education, Chang'an University, Xi'an 710064, Shaanxi, China
Abstract:A 3 D modeling of asphalt generator was carried out by the modeling software Solidworks. The finite element simulation software Fluent was used to simulate the base asphalt foaming processes under different parameters, and the results from the experiment and the simulation were compared. The reliability of finite element simulation technology on the study of base asphalt foam expansion rate was analyzed. The finite element simulation was performed on the foaming cavity and fluid materials inside the foaming cavity. The distributed cloud images of temperature, velocity, pressure, and various phases in the foaming cavity were investigated by using the Fluent post-processing function. Simulation result shows that during the whole foaming process, the increase of base asphalt temperature results in the decrease of asphalt viscosity and the increase of water vapor in the foaming cavity. When the base asphalt temperature rises from 120 to 160 ℃, the foam expansion rate of base asphalt increases from 4 to 11, revealing a great impact of base asphalt temperature on the foam expansion rate. The increase of base asphalt flow rate serves to the increase of total amount of base asphalt in the foaming cavity and reduces the contact time and area between the base asphalts. When the entrance flow rate of base asphalt increases from 60 to 120 g·s-1, the foam expansion rate of base asphalt fluctuates between 7 and 11, indicating that the change of base asphalt flow rate has a great impact on its foam expansion rate. When the water consumption increases from 2.0% to 3.5%, the foam expansion rate of base asphalt remains the same basically, indicating that the water consumption has little effect on the foam expansion rate of base asphalt. The lowest foam expansion rate obtained by the simulation is 3.57. At this time, the base asphalt flow rate is 120 g·s-1, the base asphalt temperature is 120 ℃, and the water consumption is 3.0%. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号