首页 | 官方网站   微博 | 高级检索  
     

转向架橡胶件动态参数的高低温特性
引用本文:谭富星,石怀龙,王玮,刘诗慧,刘洪涛.转向架橡胶件动态参数的高低温特性[J].交通运输工程学报,2019,19(4):104-114.
作者姓名:谭富星  石怀龙  王玮  刘诗慧  刘洪涛
作者单位:1.中车长春轨道客车股份有限公司, 吉林 长春 1300622.西南交通大学 牵引动力国家重点实验室, 四川 成都 610031
基金项目:国家自然科学基金项目51805451国家自然科学基金项目11790282中央高校基本科研业务费专项资金项目2682019CX43
摘    要:针对高速列车转向架悬挂系统中的弹性橡胶件, 为掌握其非线性刚度和阻尼系数的频变、幅变和温变特性, 开展动态参数的高低温(-60℃~60℃) 特性试验, 阐述了橡胶件参数动态特性的试验方法, 对轴箱叠层橡胶弹簧和转臂定位橡胶节点进行轴向、径向的静态和动态测试, 根据载荷-挠度滞回曲线计算刚度和阻尼系数。试验结果表明: 常温23℃工况下, 橡胶件的刚度和阻尼系数仅表现出频变、幅变特性, 参数变化量却与环境温度强相关; 相比于常温23℃工况, -60℃极低温环境下的橡胶件刚度和阻尼系数均显著增大, 激振位移为0.50 mm时刚度增加1倍以上, 阻尼系数增加4~6倍, 并且激振频率越高两者增幅越显著; 60℃高温环境下, 相比23℃橡胶件刚度仅降低约5%, 阻尼系数仅降低约25%, 并且高温环境下橡胶件的频变和幅变非线性减弱; 低温引起车辆悬挂系统动态刚度和阻尼系数变化, 进而造成车辆动力学性能指标变化, 相比于常温, -40℃工况下运行安全性指标如脱轨系数增大约5%, 车体振动加速度显著增大约17%。 

关 键 词:车辆工程    车辆动力学    转向架    橡胶件    动态特性    高低温试验    动力学仿真
收稿时间:2019-03-08

High and low temperature characteristics of rubber component dynamic parameters of a bogie
TAN Fu-xing,SHI Huai-long,WANG Wei,LIU Shi-hui,LIU Hong-tao.High and low temperature characteristics of rubber component dynamic parameters of a bogie[J].Journal of Traffic and Transportation Engineering,2019,19(4):104-114.
Authors:TAN Fu-xing  SHI Huai-long  WANG Wei  LIU Shi-hui  LIU Hong-tao
Affiliation:1.CRRC Changchun Railway Vehicles Co., Ltd, Changchun 130062, Jilin, China2.State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
Abstract:For the rubber components in bogie suspension of a high-speed train, in order to master the frequency-dependent, amplitude-dependent and temperature-dependent characteristics of nonlinear stiffness and damping coefficient, the high and low temperature characteristic tests of dynamic parameters were conducted. The test method for dynamic characteristic of rubber components parameters was introduced. Both the static and dynamic tests at axial and radial directions were performed for the layer rubber spring mounted on axle box and the rubber joint mounted on the swing-arm. The stiffness and damping coefficient were calculated through the load-deflection hysteresis curve. Test result shows that under the normal ambient temperature of 23 ℃, the stiffness and damping coefficient of rubber components only show frequency-dependent and amplitude-dependent characteristics, but their changes are strongly dependent on the temperature. Compared with the normal ambient temperature of 23 ℃, the stiffness and damping coefficient of the rubber components rise significantly under extremely low temperature environment of-60 ℃. In the case of an excitation displacement of 0.50 mm, the stiffness increases by more than 1 times, and the damping coefficient increases by 4-6 times. The higher the excitation frequency, the greater the increasing rate of stiffness and damping coefficient. In case of high temperature environment of 60 ℃, the stiffness and damping coefficient decrease only 5% and 25%, respectively, with respect to that at 23 ℃. The frequency-dependent and amplitude-dependent of rubber components are nonlinear weakened under high temperature environment. Low temperature causes the change of stiffness and damping coefficient of vehicle suspension system, which in turn affects the vehicle dynamics behaviour. With respect to that at ambient temperature, the running safety index like derailment coefficient increases slightly about 5%, whereas the car body vibration accelerations significantly rise around 17%. 
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号