首页 | 官方网站   微博 | 高级检索  
     

城市轨道交通牵引变电所继电保护可靠性评估
引用本文:林圣,林晓鸿,冯玎.城市轨道交通牵引变电所继电保护可靠性评估[J].西南交通大学学报,2018,53(6):1102-1109.
作者姓名:林圣  林晓鸿  冯玎
摘    要:为了掌握城市轨道交通牵引变电所继电保护可靠性,寻找继电保护系统薄弱环节,为故障排查提供指导,进行城市轨道交通牵引变电所继电保护可靠性评估研究. 首先针对城市轨道交通牵引变电所继电保护系统特点,确定可靠性指标;其次根据系统构成及其故障模式,建立继电保护装置故障树模型以及不同配置方案的保护系统故障树模型;最后考虑微机自检功能,基于马尔科夫理论及蒙特卡洛方法,仿真计算城市轨道交通牵引变电所继电保护可靠性指标. 研究结果表明:方法能够获取丰富的可靠性指标,进行牵引变电所继电保护可靠性评估,从而识别系统薄弱环节;自检率为0.9时,继电保护装置误动故障概率占装置故障概率比例高出拒动故障17.93%,装置误动及拒动自检成功率分别为86.09%与74.37%,保护装置可用度为99.88%;后备保护能够降低保护系统拒动概率,但由其误动造成的保护系统误动占比30%~50%,因此,在选用保护配置时需要考虑保护误动风险影响. 

关 键 词:继电保护    可靠性    电力牵引    故障树分析    蒙特卡罗方法
收稿时间:2016-10-25

Reliability Evaluation of Relay Protection for Traction Substation of Urban Rail Transit
LIN Sheng,LIN Xiaohong,FENG Ding.Reliability Evaluation of Relay Protection for Traction Substation of Urban Rail Transit[J].Journal of Southwest Jiaotong University,2018,53(6):1102-1109.
Authors:LIN Sheng  LIN Xiaohong  FENG Ding
Abstract:To understand the reliability and find the weaknesses in the relay protection system of urban rail transit traction substation to provide guidance for failure investigation, a reliability evaluation project of relay protection for urban rail transit traction substation was undertaken. First, the reliability index was determined according to the characteristics of the relay protection system of urban rail transit traction substation. Then, a fault tree model of the relay protection device and different configuration scheme protection systems were set up based on the system structure and failure mode. Finally, based on Markov theory and Monte Carlo method, the reliability index of relay protection of urban rail transit traction substation was calculated considering the self-test function of the microprocessor protection. The results show that the method can obtain sufficient reliability indicators to evaluate the reliability of traction substation relay protection to identify the protection system weaknesses. On the condition that the self-test success rate is 0.9, the relay protection device failure probability caused by the protection maloperation is 17.93% higher than that caused by the protection rejection. Meanwhile, the self-test success rates of maloperation and rejection are 86.09% and 74.37% respectively, and the availability of protection devices is 99.88%. Backup protection can reduce the rejection probability of the protection system, but backup protection caused about 30%–50% of the maloperation of the protection system. Therefore, it is necessary to consider the impact of protection maloperation when selecting the protection configuration. 
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《西南交通大学学报》浏览原始摘要信息
点击此处可从《西南交通大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号