首页 | 官方网站   微博 | 高级检索  
     

流线型箱梁涡振主动吹气流动控制及作用机理
引用本文:李春光,颜虎斌,韩艳,毛禹,罗楚钰.流线型箱梁涡振主动吹气流动控制及作用机理[J].交通运输工程学报,2022,22(6):220-231.
作者姓名:李春光  颜虎斌  韩艳  毛禹  罗楚钰
作者单位:1.长沙理工大学 土木工程学院,湖南 长沙 4101142.中铁大桥局集团有限公司 桥梁结构健康与安全国家重点实验室,湖北 武汉 430034
基金项目:国家自然科学基金项目51978087国家自然科学基金项目52178452湖南省科技创新领军人才项目2021RC4031桥梁结构健康与安全国家重点实验室开放研究基金项目BHSKL21-03-KF
摘    要:为研究基于主动吹气的流动抑振措施对流线型箱梁涡振性能的影响,进行了1∶50刚性节段模型自由悬挂风洞试验,节段模型与吹气装置连接以达到流动控制效果,分析了主梁处于最不利5°攻角时不同气孔参数下的涡振响应,并通过数值模拟重现了主梁竖弯涡振,分析了主动吹气对抑制主梁涡振的作用机理。研究结果表明:5°攻角原设计断面出现明显竖弯及扭转涡振现象,其中竖弯及扭转涡振分别有2个锁定区间,在竖弯第2锁定区间及扭转第1锁定区间出现涡振响应峰值;主动吹气的流动控制对主梁涡振响应幅值及涡振区间均有较大影响;主梁竖弯涡振在下腹板上下游或者下游吹气速率10 m·s-1时消失,最佳抑制效果达91.9%;吹气速率5 m·s-1对于扭转涡振有明显抑制作用,扭转涡振最佳抑制效果达65.4%;吹气速率对于涡振性能影响明显,吹气速率10 m·s-1的竖弯抑制效果优于吹气速率5 m·s-1,而吹气速率5 m·s-1的扭转抑制效果优于吹气速率10 m·s-1;气孔间距2.5 m工况总体涡振控制效果优于气孔间距5.0 m工况;气孔布置在下腹板的工况抑制效果优于气孔布置在上腹板的工况;当气孔布置于下游下腹板处,吹气速率达10 m·s-1,气孔间距为2.5 m时,主动吹气降低了主梁下游上下表面周期性脉动压差,破坏了下游下腹板处的负压中心,故其能有效抑制主梁竖弯涡振。 

关 键 词:桥梁工程    流动控制    主动吹气    风洞试验    数值模拟    流线型箱梁    抑振机理
收稿时间:2022-05-09

Active blowing flow control for VIV of streamlined box girder and its mechanism
LI Chun-guang,YAN Hu-bin,HAN Yan,MAO Yu,LUO Chu-yu.Active blowing flow control for VIV of streamlined box girder and its mechanism[J].Journal of Traffic and Transportation Engineering,2022,22(6):220-231.
Authors:LI Chun-guang  YAN Hu-bin  HAN Yan  MAO Yu  LUO Chu-yu
Affiliation:1.School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China2.State Key Laboratory for Health and Safety of Bridge Structures, China Railway Major Bridge Engineering Group Co., Ltd., Wuhan 430034, Hubei, China
Abstract:In order to analysis the effect of flow vibration suppression measures based on active blowing on the vortex-induced vibration (VIV) performance of a streamlined box girder, a free-hanging wind tunnel test with a 1∶50 rigid segmental model was carried out, and the segmental model was connected to a blowing device to achieve the flow control effect. The VIV response of the girder at the most unfavorable attack angle of 5° was analyzed under different air hole parameters. The vertical VIV of the girder was reproduced through the numerical simulation, and the mechanism of active blowing in suppressing the VIV of the girder was analyzed. Research results show that obvious vertical and torsional VIV is observed in the original design section with an angle of attack of 5°. Specifically, two locking intervals are possessed by the vertical and torsional VIV, respectively, and the VIV response peaks appear in the second locking interval of the vertical VIV and the first locking interval of the torsional VIV. The VIV response amplitude and VIV interval of the girder are greatly affected by the active blowing flow control. The vertical VIV of the girder disappears when the blowing rate in the upstream and downstream or the downstream of a lower web is 10 m·s-1, and the best suppression effect reaches 91.9%. The blowing rate of 5 m·s-1 can obviously suppress the torsional VIV, and the best suppression effect of the torsional VIV reaches 65.4%. The VIV performance is significantly affected by the blowing rate. The vertical suppression effect at a blowing rate of 10 m·s-1 is better than that at a blowing rate of 5 m·s-1, while the torsional suppression effect at a blowing rate of 5 m·s-1 is better than that at a blowing rate of 10 m·s-1. The overall VIV control effect under a working condition with an air hole spacing of 2.5 m is better than that under a working condition with an air hole spacing of 5.0 m. The suppression effect under the working condition with air holes arranged on the lower web is better than that under the working condition with air holes arranged on the upper web. When the air holes are arranged on the downstream lower web, the blowing rate reaches 10 m·s-1, and the air hole spacing is 2.5 m. The active blowing can reduce the periodic pulsing pressure difference on the downstream upper and lower surfaces of the girder and destroy the negative pressure center at the downstream lower web. Therefore, it can effectively suppress the vertical VIV of the girder. 2 tabs, 13 figs, 26 refs. 
Keywords:
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号