首页 | 官方网站   微博 | 高级检索  
     

基于物理参数的转向架定位橡胶节点动力学建模
引用本文:刘诗慧,石怀龙,王玮,刘洪涛,谭富星.基于物理参数的转向架定位橡胶节点动力学建模[J].交通运输工程学报,2019,19(6):91-100.
作者姓名:刘诗慧  石怀龙  王玮  刘洪涛  谭富星
作者单位:1.中车长春轨道客车股份有限公司, 吉林 长春 1300622.西南交通大学 牵引动力国家重点实验室, 四川 成都 610031
基金项目:国家自然科学基金项目51805451国家自然科学基金项目11790282中央高校基本科研业务费专项资金项目2682019CX43
摘    要:针对高速列车转向架悬挂系统中的弹性橡胶件, 开展了基于物理参数的橡胶件非线性动力学建模方法研究; 为准确模拟其非线性刚度与阻尼的硬度相关性、结构尺寸相关性、激励频率相关性和激励位移幅值相关性, 采用有限元软件ABAQUS中的Mooney-Rivlin橡胶本构模型表征橡胶件的刚度与其结构尺寸和胶料硬度之间的相关性, 采用包括分数导数阻尼力元、摩擦力元和弹簧力元的动力学模型表征橡胶件刚度和阻尼的频变、幅变特性, 采用最小二乘法实现基于台架试验的模型参数识别; 对橡胶垫和定位橡胶节点的非线性特性进行仿真和台架试验, 验证了动力学模型的有效性; 在SIMPACK软件中定义自编力元, 进行车辆动力学性能分析, 有限元模型为动力学模型提供了基础的模型参数。分析结果表明: 橡胶垫和定位橡胶节点的刚度与胶料邵氏硬度基本呈正比关系, 硬度80 HA对应的刚度约为60 HA时的2倍; 载荷作用方向的胶料越少其对应方向的刚度越大; 橡胶垫的轴向和径向刚度解耦, 分别受高度和内外径尺寸影响, 橡胶垫轴向刚度随高度的下降率为0.2~0.6 MN·m-1·mm-1; 定位橡胶节点的芯轴尺寸改变引起其轴向和径向刚度同时变化, 定位橡胶节点径向刚度随内径的增长率为3.1~5.2 MN·m-1·mm-1; 采用非线性橡胶件动力学模型的车辆动力学仿真结果与传统等效力元模型结果差异为20%, 说明橡胶垫和定位橡胶节点动态参数的非线性对车辆动力学性能有显著影响。 

关 键 词:车辆工程    车辆动力学    转向架    橡胶件    动态特性    非线性    动力学仿真
收稿时间:2019-04-27

Dynamics modelling of positioning rubber joint of a bogie based on physical parameters
LIU Shi-hui,SHI Huai-long,WANG Wei,LIU Hong-tao,TAN Fu-xing.Dynamics modelling of positioning rubber joint of a bogie based on physical parameters[J].Journal of Traffic and Transportation Engineering,2019,19(6):91-100.
Authors:LIU Shi-hui  SHI Huai-long  WANG Wei  LIU Hong-tao  TAN Fu-xing
Affiliation:1.CRRC Changchun Railway Vehicles Co., Ltd., Changchun 130062, Jilin, China2.State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
Abstract:Aiming at the elastic rubber components in the suspension system of a high-speed train bogie, the nonlinear dynamics modelling method for the rubber component was studied based on the physical parameters. In order to accurately simulate the correlations between the nonlinear stiffness and the damping hardness, structural dimensions, excitation frequency and excitation displacement amplitude, the Mooney-Rivlin rubber constitutive model in the software ABAQUS was used to characterize the correlation between the rubber component's stiffness and the structural dimensions and rubber hardness. A dynamics model, including a fractional derivative damping force element, a friction force element, and a spring force element, was used to characterize the frequency-dependency and amplitude-dependency of stiffness and damping of a rubber component. The least squares method was used to identify the model parameters based on the lab tests. The nonlinear characteristics of rubber bearing and positioning rubber joint were numerically simulated and tested in the lab to validate the proposed model. The vehicle dynamics performance analysis was performed by using an user-coded force element defined in the software SIMPACK, and the finite element model was used to provide the basic model parameters for the dynamics model. Analysis result shows that the stiffnesses of rubber bearing and positioning rubber joint are basically proportional to the Shore hardness of rubber material, and the stiffness corresponding to the hardness of 80 HA is about twice that at 60 HA. The less the rubber material in the direction of load action, the greater the stiffness in the corresponding direction. The axial and radial stiffnesses of rubber bearing are decoupled, which is affected by the height and the size of inner and outer diameters, respectively, and the decrease rate of the axial stiffness of rubber bearing with the increase of height is 0.2-0.6 MN·m-1·mm-1. Both the axial and radial stiffness of positioning rubber joint varies with the change of mandrel size, and the increase rate of radial stiffness with the increase of inner diameter is 3.1-5.2 MN·m-1·mm-1. The vehicle dynamics simulation results by using the nonlinear rubber component dynamics model are 20% different from the results by using a conventional equivalent force element model, which means the nonlinearities of dynamics parameters of the rubber bearing and positioning rubber joint have severe influence on the vehicle dynamics. 
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号