首页 | 官方网站   微博 | 高级检索  
     

城市轨道交通列车车外噪声特性
引用本文:张凌,周豪,冯青松,陈艳明,雷晓燕.城市轨道交通列车车外噪声特性[J].交通运输工程学报,2021,21(3):238-247.
作者姓名:张凌  周豪  冯青松  陈艳明  雷晓燕
作者单位:华东交通大学 铁路环境振动与噪声教育部工程研究中心,江西 南昌 330013
基金项目:国家自然科学基金项目52068029国家自然科学基金项目51878277江西省主要学科学术和技术带头人培养计划项目20194BCJ22008江西省重点研发计划项目20192BBE50008江西省自然科学基金项目20202BAB204026
摘    要:基于统计能量分析(SEA)和半无限流体方法,建立6节编组的B型列车车外噪声预测仿真模型;通过试验提取车体SEA模型的振动激励和轮轨噪声激励,施加给车体并计算分析了车外噪声特性;以中国某城市轨道交通列车通过噪声试验对模型进行验证,并探讨了列车各板单元和轮轨噪声声源对车外场点声压的贡献量。研究结果表明:统计能量分析和半无限流体方法能够准确预测车外噪声,计算效率为常规方法的14.1倍;车速为60 km·h-1时,车外7.5和30.0 m处噪声显著频段为400~1 600 Hz,声压级随频率升高先增大后缓慢下降,其变化趋势和轮轨噪声变化趋势一致,最大幅值频率集中在800 Hz处,最大值分别为64.88、61.75 dB(A);车外噪声贡献量由大到小依次为轮轨噪声、车窗、侧墙、车门、底板、顶板、端墙;车体振动辐射噪声在低频段的贡献较大,在中心频率为20~100 Hz时,车外噪声主要来源为车窗、侧墙,其贡献率分别达到21.2%和19.2%;在中心频率为100~500 Hz时,车体各板及轮轨噪声贡献率差异较小;在中心频率为500~5 000 Hz时,车体各板块的贡献率呈缓慢下降趋势,轮轨噪声的贡献率随频率升高逐渐增加,在2 000~5 000 Hz的1/3倍频带内达到60%以上。 

关 键 词:城市轨道交通    车外噪声    统计能量分析    半无限流体方法    噪声特性    贡献率
收稿时间:2020-12-23

Characteristics of external noise of urban rail transit train
ZHANG Ling,ZHOU Hao,FENG Qing-song,CHEN Yan-ming,LEI Xiao-yan.Characteristics of external noise of urban rail transit train[J].Journal of Traffic and Transportation Engineering,2021,21(3):238-247.
Authors:ZHANG Ling  ZHOU Hao  FENG Qing-song  CHEN Yan-ming  LEI Xiao-yan
Affiliation:Engineering Research Center of Railway Environmental Vibration and Noise of Ministry of Education, East China Jiaotong University, Nanchang 330013, Jiangxi, China
Abstract:Based on the statistical energy analysis (SEA) theory and semi-infinite fluid method, a 6-group B-type train external noise simulation model was established. The vibration and wheel-rail noise excitations of the SEA model of the vehicle were determined via testing. An excitation was applied to the vehicle, and the external noise characteristics were calculated and analyzed. The model was verified through a passing-noise experiment on a rail transit train in a city in China. The contributions of each plate and the wheel-rail noise to the sound pressure level at the external point were discussed as well. Analysis results indicate that the SEA theory and semi-infinite fluid method can accurately predict the external noise of a train, with a computational efficiency 14.1 times that of the conventional approach. When the speed is 60 km·h-1, the significant frequency band at 7.5 and 30.0 m outside the vehicle is 400-1 600 Hz. The sound pressure level increases first and then decreases slowly with the increasing frequency. The variation trend is the same as that of the wheel-rail noise. The maximum amplitude frequency is 800 Hz, with the maximum values being 64.88 and 61.75 dB(A). The contributions to the external noise in decreasing order are those from the wheel-rail noise, window, side wall, door, floor, roof, and end wall. The noise radiated due to vehicle vibration contributes significantly to the low-frequency band. At the center frequencies of 20-100 Hz, the main sources of external noise are windows and side walls, the contribution rates are 21.2% and 19.2%, respectively. At the center frequencies of 100-500 Hz, the difference in the noise contribution rates of each plate and the wheel-rail system is insignificant. At the center frequencies of 500-5 000 Hz, the contribution rates of each plate of the train decrease gradually, and the contribution rate of the wheel-rail noise increases gradually with the increasing frequency, reaching more than 60% in the 1/3 octave band of 2 000-5 000 Hz. 3 tabs, 15 figs, 30 refs. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号