首页 | 官方网站   微博 | 高级检索  
     

中低速磁浮车辆-桥梁耦合系统动力性能试验
引用本文:李苗,马卫华,龚俊虎,刘文亮,高定刚,罗世辉.中低速磁浮车辆-桥梁耦合系统动力性能试验[J].交通运输工程学报,2022,22(1):141-154.
作者姓名:李苗  马卫华  龚俊虎  刘文亮  高定刚  罗世辉
作者单位:1.西南交通大学 牵引动力国家重点实验室, 四川 成都 6100312.中铁磁浮交通投资建设有限公司, 湖北 武汉 4300603.中铁磁浮科技(成都)有限公司, 四川 成都 6100834.同济大学 国家磁浮交通工程技术研究中心, 上海 201804
基金项目:中国铁建股份有限公司科技重大专项;科技计划项目;国家自然科学基金;牵引动力国家重点实验室自主课题
摘    要:为探究中低速磁浮车辆-桥梁耦合系统的振动特性,对其在上海临港中低速磁浮试验基地开展了现场动力学试验,研究了车速和桥梁结构形式对耦合系统动力响应的影响;试验车辆采用(悬挂)中置式悬浮架,试验桥梁为25 m混凝土简支梁和25 m钢结构简支梁;为明确2种桥梁的固有振动特性,对其进行了模态测试;提取了不同工况下车辆-桥梁耦合系统的加速度及桥梁的垂向动位移信号;计算了垂向和横向Sperling指标、动力系数、梁端转角等车辆-桥梁耦合系统关键动力指标,详细分析了耦合系统的动态响应特性,评估了系统的振动水平。研究结果表明:混凝土梁和钢梁的垂向一阶固有频率分别为7.32、7.72 Hz,2种桥梁的各项关键动力指标均满足相关标准要求;混凝土梁和钢梁的最大加速度分别不超过0.2、1.4 m·s-2;当车速为5 km·h-1时,钢梁的垂向动力响应幅值约为混凝土梁的7.6倍;在测试的速度范围内,车辆的横向Sperling指标均小于2.5,表明车辆在混凝土梁和钢梁上运行时均具有优秀的横向平稳性;车辆空气弹簧悬挂系统的垂向固有频率峰值在车速为25 km·h-1时达到最大,通过混凝土梁和钢梁的垂向Sperling指标分别达到2.687、3.340。测试结果可为中低速磁浮车辆-桥梁耦合系统的优化设计和数值模型验证等提供有价值的参考。 

关 键 词:车辆工程    中低速磁浮    现场试验    车辆-桥梁耦合系统    自振特性    动力响应    平稳性指标
收稿时间:2021-10-07

Dynamic performance test of medium and low speed maglev vehicle-bridge coupled system
LI Miao,MA Wei-hua,GONG Jun-hu,LIU Wen-liang,GAO Ding-gang,LUO Shi-hui.Dynamic performance test of medium and low speed maglev vehicle-bridge coupled system[J].Journal of Traffic and Transportation Engineering,2022,22(1):141-154.
Authors:LI Miao  MA Wei-hua  GONG Jun-hu  LIU Wen-liang  GAO Ding-gang  LUO Shi-hui
Affiliation:1.State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, Sichuan, China2.China Railway Maglev Transportation Investment Construction Co., Ltd., Wuhan 430060, Hubei, China3.China Railway Maglev Science and Technology (Chengdu) Co., Ltd., Chengdu 610083, Sichuan, China4.Maglev Transportation Engineering R and D Center, Tongji University, Shanghai 201804, China
Abstract:To investigate the vibration characteristics of medium and low speed maglev vehicle-bridge coupled system, field dynamics tests were carried out at Shanghai Lingang Medium and Low Speed Maglev Test Base, the effects of vehicle speed and structural form of the bridge on the dynamic response of the coupled system were studied. The levitation frames with mid-set suspension was adopt by the test vehicle, while the test bridges were 25 m simply-supported with concrete and steel structures. Modal tests were performed to clarify the natural vibration characteristics of the two bridges. The acceleration of the vehicle-bridge coupled system and the vertical dynamic displacement signals of the bridge under different operating conditions were extracted. The key dynamic indicators of the vehicle-bridge coupled system such as the vertical and lateral Sperling indexes, dynamic coefficients, and rotation angle of the beam end were calculated, the dynamic response characteristics of the coupled system were analyzed in detail, and the vibration level of the system was evaluated. Research results show that the vertical first-order natural frequencies of the concrete bridge and steel bridge are 7.32 and 7.72 Hz, respectively, and the key dynamic indicators of these two bridges meet the requirements of relevant standards. The maximum acceleration of the concrete bridge and steel bridge are less than 0.2 and 1.4 m·s-2, respectively. When the vehicle is operating at 5 km·h-1, the amplitude of vertical dynamic response of the steel bridge is approximately 7.6 times that of the concrete bridge. In the speed range tested, the lateral Sperling index of vehicle is less than 2.5, indicating excellent lateral operation stability when the vehicle is running on the concrete bridge and steel bridge. The peak of the vertical natural frequency of the vehicle's air-spring suspension system reaches its maximum when the vehicle speed is 25 km·h-1, and the vertical Sperling indexes reach 2.687 and 3.340 when the vehicle passes through the concrete bridge and steel bridge, respectively. The test results can provide valuable references for the optimal design and numerical model validation of medium and low speed maglev vehicle-bridge coupled system. 1 tab, 19 figs, 26 refs. 
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号