首页 | 官方网站   微博 | 高级检索  
     

黏聚区模型在沥青路面反射裂缝模拟中的应用
引用本文:周正峰,蒲卓桁,刘超.黏聚区模型在沥青路面反射裂缝模拟中的应用[J].交通运输工程学报,2018,18(3):1-10.
作者姓名:周正峰  蒲卓桁  刘超
作者单位:1.西南交通大学 土木工程学院, 四川 成都 6100312.西南交通大学 道路工程四川省重点实验室, 四川 成都 6100313.西南交通大学 高速铁路线路工程教育部重点实验室, 四川 成都 610031
基金项目:国家自然科学基金项目51608457国家自然科学基金项目51008255交通运输部企业技术创新项目2015 315 Q12 030
摘    要:结合ABAQUS有限元软件, 分析了基于牵引力-分离法则的三维黏结单元本构模型与参数; 通过对单一黏结单元施加位移荷载, 对比了不同初始损伤与完全失效准则组合下, 加载过程中单元应力、位移和应变能的理论计算结果与数值模拟结果, 以验证黏结单元的可靠性; 将黏结单元布设在开裂基层上方沥青面层可能发生反射开裂的部位, 应用黏聚区模型模拟裂缝的发展过程, 研究了黏结单元参数和面层厚度对裂缝扩展的影响。分析结果表明: 当黏结层刚度由40GN·m-3下降到20GN·m-3时, 单侧荷载与对称荷载作用下黏结层中分离位移的比值由1.52增大到13.52, 单侧荷载作用下黏结层中剪切位移与张开位移的比值由1.52增大到11.32, 说明当潜在裂缝扩展区刚度降低时, 沥青层易于产生Ⅱ型剪切裂缝; 在交通荷载作用下, 沥青面层损伤开裂的路径为首先沥青面层底部发生损伤并向上发展, 随后路表轮载作用处附近发生损伤并向下发展, 在损伤贯穿沥青面层后, 潜在裂缝扩展区刚度的继续下降将使损伤沿道路横向继续扩展; 在面层厚度以2cm的梯度由16cm增加到22cm的过程中, 黏结层中分离位移分别降低了32.31%、15.22%、9.63%, 剪切位移与张开位移的比值由3.24降低到1.10, 说明增加面层厚度能有效延缓反射裂缝的扩展, 但此延缓效果随着面层厚度的增加而减弱, 并且使得面层反射开裂类型由Ⅱ型剪切型开裂逐渐趋于Ⅰ、Ⅱ型混合模式开裂。 

关 键 词:路面工程    沥青路面    反射裂缝    黏聚区模型    有限元分析
收稿时间:2018-02-03

Application of cohesive zone model to simulate reflective crack of asphalt pavement
ZHOU Zheng-feng,PU Zhuo-heng,LIU Chao.Application of cohesive zone model to simulate reflective crack of asphalt pavement[J].Journal of Traffic and Transportation Engineering,2018,18(3):1-10.
Authors:ZHOU Zheng-feng  PU Zhuo-heng  LIU Chao
Affiliation:1.School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China2.Highway Engineering Key Laboratory of Sichuan Province, Southwest Jiaotong University, Chengdu 610031, Sichuan, China3.Key Laboratory of High-speed Railway Engineering of MOE, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
Abstract:Based on ABAQUS, the constitutive model and parameters of 3 Dcohesive element were analyzed by using the traction-separation law. By applying the displacement load on a cohesive element, the results of numerical simulation and theoretical computation of the stresses, displacements and strain energies were compared to verify the reliability of cohesive element under various combination rules of initial damage and complete failure in the loading process. In the asphalt surface course on the cracked base course, the cohesive elements were laid at the positions where reflective cracks might occur, the cohesive zone model was employed to simulatethe cracking procedure, and the effects of the parameters of cohesive element and the thickness of asphalt surface course on the crack propagation were studied. Analysis result shows that when the cohesive layer stiffness decreases from 40 to 20 GN · m-3, the ratio of separation displacements of cohesive layer under unilateral and symmetric loads increases from 1.52 to 13.52, and the ratio of shear displacement to normal displacement of cohesive layer increases from 1.52 to 11.32 under unilateral load, which indicates that the asphalt surface course tends to appear type-Ⅱ shear cracks as the stiffness of potential cracking area decreases. Under traffic load, the cracking path of asphalt pavement is as follows: first, the damage begins at the bottom of asphalt surface course and propagates upwards; next, other damages occur near the loading area and propagate downwards; finally, after penetrating the entire surface course, the continuous decrease of potential fracture zone's stiffness will cause crack to propagate along the transverse direction of the pavement. In the increasing process of surface course thickness from 16 to 22 cm with a 2 cm-gradient, the separation displacement of cohesive layer decreases by 32.31%, 15.22% and 9.63%, respectively, and the ratio of shear displacement to normal displacement decreases from 3.24 to 1.10, which indicates that the increase of surface course thickness can effectively mitigate the propagation of reflective crack, although the effect decreases as the thickness increases. Furthermore, the increase of surface course thickness makes the reflective crack gradually transfer from type-Ⅱshear crack to type-Ⅰ-Ⅱmixed crack. 
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号