首页 | 官方网站   微博 | 高级检索  
     

基于二系垂向作动器与压电作动器的动车组车体振动控制
引用本文:曹辉,张卫华,缪炳荣.基于二系垂向作动器与压电作动器的动车组车体振动控制[J].交通运输工程学报,2018,18(3):105-113.
作者姓名:曹辉  张卫华  缪炳荣
作者单位:1.成都工业学院 机械工程学院, 四川 成都 6117302.西南科技大学 制造科学与工程学院, 四川 绵阳 6210103.西南交通大学 牵引动力国家重点实验室, 四川 成都 610031
基金项目:国家自然科学基金项目51375405西南科技大学科研基金资助项目17zx7124
摘    要:为了减小高速动车组车体刚性与弹性振动, 提出了一种基于二系垂向作动器与车体压电作动器的高速动车组车体振动主动控制方法; 基于某型高速动车组, 设计了一种在车辆二系安装垂向作动器, 在车体底架布置压电作动器, 运用H鲁棒最优控制器进行车辆协调控制的主动减振方法; 建立了基于车辆动力学参数的刚柔耦合减振力学模型, 采用H2及H准则优化压电作动器与压电传感器布置位置, 运用鲁棒最优控制方法设计了H反馈控制器; 利用MATLAB仿真了减振装置与主动控制方法对车辆动力学性能的影响, 比较了被动悬挂车辆、仅安装二系垂向作动器车辆与采用主动控制车辆的动力学性能差异。研究结果表明: 压电作动器与压电传感器布置在距车体左端距离为7.15、12.25、17.35m处车体一阶及二阶弹性模态归一化H2及H范数最大, 可以作为压电作动器与传感器的布置位置; 基于二系垂向作动器与车体压电作动器的鲁棒最优控制方法能够有效地抑制车体的振动, 一阶垂弯振动频率处车体中部和转向架上方的加速度功率谱分别减小为被动悬挂车辆的5%、10%;速度越大, 振动加速度抑制效果越明显, 当车辆的运行速度为200km·h-1时, 车体振动加速度均方根减小10%, 当车辆的运行速度为350km·h-1时, 车体振动加速度均方根减小18%;相对于被动悬挂, 二系垂向作动器输出力功率谱在车体浮沉与点头振动频率处的量级为106 N2·Hz-1, 对车体刚性振动有较大抑制作用, 压电作动器电压功率谱在车体一阶垂弯振动频率处达到峰值4 000V2·Hz-1, 对车体弹性振动有较大抑制作用。 

关 键 词:车辆工程    动车组    车辆振动控制    鲁棒控制    二系垂向作动器    压电作动器    权函数
收稿时间:2018-02-13

Vibration control of EMU car body based on secondary vertical actuators and piezoelectric actuators
CAO Hui,ZHANG Wei-hua,MOU Bing-rong.Vibration control of EMU car body based on secondary vertical actuators and piezoelectric actuators[J].Journal of Traffic and Transportation Engineering,2018,18(3):105-113.
Authors:CAO Hui  ZHANG Wei-hua  MOU Bing-rong
Affiliation:1.College of Mechanical Engineering, Chengdu Technological University, Chengdu 611730, Sichuan, China2.School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China3.State-Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
Abstract:To reduce the rigid and elastic vibration of car body of high-speed electric multiple units (EMU), the active vibration control method was proposed based on secondary vertical actuators and car body piezoelectric actuators. Based on a certain type of high-speed EMU, an active reducing method of vibration was designed in which vertical actuators were installed in thesecondary suspension, piezoelectric actuators were arranged in the under-frame of the car body, and an H robust optimal controller was used to coordinate the vehicle control. A mechanics model of rigid-flexible coupled vibration reduction based on vehicle dynamics parameters was established. The placement positions of the piezoelectric actuators and sensors were optimized by using the H2 and H norms. The H feedback controller was designed by robust optimal control method. The effect of vibration damper and active control method on vehicle dynamic performance was simulated by MATLAB. The dynamic performance differences between passive suspension vehicle, secondary vertical actuators vehicle and active control vehicle were compared. Analysis results show that when the piezoelectric actuators and the piezoelectric sensors are arranged at the distances of 7.15, 12.25, and 17.35 mfrom the left end of the car body, the normalized H2 and H norms of the first and second-order elastic modes of the car body are the largest, and can be used as the placement positions of piezoelectric actuators and sensors. The robust optimal control method based on the secondary vertical actuators and car body piezoelectric actuators can effectively suppress vibration of the car body, and the acceleration power spectrums of the first order vertical bending vibration frequency on the car body centre and above the bogie reduce by 5% and 10% of passive suspension vehicle, respectively. With higher velocity, the vibration acceleration suppression effect is more obvious. When vehicle's speed is 200 and 350 km·h-1, its mean square root of vibration acceleration decreases by 10% and 18%, respectively. Compared with the passive suspension, the magnitudes of output force power spectrums of the secondary vertical actuators are 106 N2·Hz-1 at the bounce and pitch vibration frequencies of the car body. Thus, the secondary vertical actuators can greatly suppress the rigid vibration of the car body. The voltage power spectrums of the piezoelectric actuators reach a peak of 4 000 V2·Hz-1 at the first order vertical bending vibration frequency of the car body, which greatly suppresses the elastic vibration of the car body. 
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号