首页 | 官方网站   微博 | 高级检索  
     

重型车辆撞击下桥墩碰撞力简化模型
引用本文:赵武超,钱江,王娟.重型车辆撞击下桥墩碰撞力简化模型[J].交通运输工程学报,2019,19(4):47-58.
作者姓名:赵武超  钱江  王娟
作者单位:1.同济大学 土木工程防灾国家重点实验室, 上海 2000922.上海建桥学院 商学院, 上海 201306
基金项目:国家自然科学基金项目51438010
摘    要:为了探究钢筋混凝土桥墩在重型车辆撞击下的安全性能, 建立了重型车辆-桥墩碰撞精细有限元模型, 研究了撞击速度、桥墩直径、上部结构边界条件和货物高度对桥墩破坏模式和内力分布的影响; 分析了不同工况下的车辆碰撞力特征, 并基于车辆初始动能耗散特点提出了碰撞力简化模型。分析结果表明: 重型车辆碰撞过程可以分为保险杠、发动机和货物撞击桥墩3个阶段, 碰撞力在前2个阶段主要集中在0.9 m高度处, 而在第3个阶段主要分布在2.7 m高度处; 在重型车辆撞击下, 不仅桥墩端部会出现严重损伤, 碰撞部位附近也可能发生严重的局部冲剪破坏; 由于忽略了碰撞荷载的动力效应和车辆与桥墩的耦合作用, 采用《公路桥涵设计通用规范》 (JTG D60—2015) 中建议的等效静力设计方法难以获得桥墩的实际撞击响应; 撞击速度对桥墩内力和碰撞力的影响最显著, 货物高度的不同会改变碰撞力的空间分布, 但不会影响桥墩的最大内力响应; 重型车辆的初始动能存在6.5 MJ的阈值, 当初始动能小于该阈值时, 车辆发动机和保险杠的碰撞作用对桥墩动力响应起主导作用, 反之, 后部货物的碰撞作用控制碰撞力峰值; 碰撞力简化模型和精细车辆模型预测所得桥墩最大内力响应的相对误差在8%以内, 且计算耗时从6~7 h缩短到4 min。 

关 键 词:桥梁工程    碰撞力    数值仿真    内力分布    能量阈值    简化模型
收稿时间:2019-03-01

Simplified impact force model of pier under heavy vehicle collision
ZHAO Wu-chao,QIAN Jiang,WANG Juan.Simplified impact force model of pier under heavy vehicle collision[J].Journal of Traffic and Transportation Engineering,2019,19(4):47-58.
Authors:ZHAO Wu-chao  QIAN Jiang  WANG Juan
Affiliation:1.State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China2.Business School, Shanghai Jian Qiao University, Shanghai 201306, China
Abstract:To explore the safety of reinforced concrete piers under heavy vehicle collision, a refined finite element (FE) model of heavy vehicle-pier collision was established. The effects of impact velocity, pier diameter, superstructure boundary condition and cargo height on the failure mode and internal force distribution of pier were investigated. The characteristics of vehicle impact force under different conditions were analyzed, and a simplified impact force model was proposed based on the dissipation characteristics of vehicle initial kinetic energy. Analysis result shows that the heavy vehicle collision process can be divided into three stages such as the bumper, engine and cargo collide the pier. The impact force is mainly concentrated at the elevation of 0.9 m in the first two collision stages, and is distributed at the elevation of 2.7 m in the third collision stage. Under the heavy vehicle collision, not only will there be serious damage at the end of pier, but also there may be serious local punching shear damage near the collision site. Due to the neglection to the dynamic effect of impact load and the coupling effect of vehicle and pier, the equivalent static design approach recommended by the General Code for Design of Highway Bridges and Culverts (JTG D60—2015) is difficult to obtain an actual impact response of pier. The impact velocity has the most significant influence on the internal force and impact force of pier. The difference of cargo height changes the spatial distribution of impact force, but will not affect the maximum internal force response of pier. A threshold of 6.5 MJ exists in the initial kinetic energy of heavy vehicle. When the initial kinetic energy is less than the threshold, the impact actions from the vehicle engine and bumper play dominant roles in the dynamic response of pier. On the contrary, the impact action of cargo at the back determines the peak impact force. The relative error of the predicted maximum internal force responses of pier between the simplified impact force model and the refined vehicle model is less than 8%, and the computation time shortens from 6-7 h to 4 min. 
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号