首页 | 官方网站   微博 | 高级检索  
     

融合稳定性的高速无人驾驶车辆纵横向协调控制方法
引用本文:李军,唐爽,黄志祥,周伟.融合稳定性的高速无人驾驶车辆纵横向协调控制方法[J].交通运输工程学报,2020,20(2):205-218.
作者姓名:李军  唐爽  黄志祥  周伟
作者单位:1.重庆交通大学机电与车辆工程学院, 重庆 4000742.重庆交通大学城市轨道交通车辆系统集成与控制重庆市重点试验室, 重庆 400074
基金项目:国家自然科学基金;重庆市自然科学基金
摘    要:提出了一种纵横向协调控制的路径跟踪控制方法; 建立了车辆预瞄误差模型和考虑路面地形的高速车辆等效动力学模型, 以此引入道路曲率地形因素; 基于模糊规则设计了预瞄距离发生器, 解决预瞄误差模型中固定预瞄距离的问题; 建立了预测时域与道路曲率的函数关系, 运用模型预测控制算法求解前轮转角, 从而建立路径跟踪控制器; 运用指数模型表示车辆期望车速, 设计了比例积分微分纵向控制器控制车速以改善路径跟踪精度; 运用质心侧偏角相平面图表征车辆稳定性特征, 设计比例积分微分稳定性控制器以改善车辆稳定性。研究结果表明: 提出的控制方法能在不同附着系数路面上对车辆跟踪性能进行优化, 在干燥沥青路面以车速90 km·h-1行驶时, 与只运用模型预测控制算法进行路径跟踪控制的车辆相比, 最大横向误差可减少33%;在潮湿沥青路面以车速70 km·h-1行驶时, 与只运用模型预测控制算法进行路径跟踪控制的车辆相比, 最大横向误差可减少30%;在冰雪路面以车速55 km·h-1行驶时, 与只运用模型预测控制算法进行路径跟踪控制的车辆相比, 最大横向误差可减少16%。可见, 所提出的控制方法能有效改善路径跟踪精度。 

关 键 词:无人驾驶车辆    路径跟踪    纵横向控制    模糊控制    稳定性
收稿时间:2019-11-14

Longitudinal and lateral coordination control method of high-speed unmanned vehicles with integrated stability
LI Jun,TANG Shuang,HUANG Zhi-xiang,ZHOU Wei.Longitudinal and lateral coordination control method of high-speed unmanned vehicles with integrated stability[J].Journal of Traffic and Transportation Engineering,2020,20(2):205-218.
Authors:LI Jun  TANG Shuang  HUANG Zhi-xiang  ZHOU Wei
Affiliation:1.College of Mechanical and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China2.Chongqing Key Laboratory of Rail Vehicle System Integration and Control, Chongqing Jiaotong University, Chongqing 400074, China
Abstract:A path tracking control method considering longitudinal and lateral coordination control was proposed. The vehicle preview error model and high-speed vehicle equivalent dynamics model considering road surface terrain were established to introduce road curvature terrain factors. The preview distance generator based on the fuzzy rules was designed to solve the problem of fixed preview distance in the preview error model. The function relationship between the time domain and the road curvature was established. The model predictive control algorithm was used to solve the front wheel rotation angle, thereby establishing a path tracking controller. The expected vehicle speed was represented by the exponential model, and the proportion integration differentiation longitudinal controller was designed to improve the path tracking accuracy. The vehicle stability characteristic was represented by phase plane of slip angle, and the proportion integration differentiation stability controller was designed to improve the vehicle stability. Research result shows that the control method can optimize the vehicle tracking performance on the roads with different adhesion coefficients. When driving on a dry asphalt pavement at a speed of 90 km·h-1, the maximum lateral error reduces by 33% compared with a vehicle that only uses model predictive control algorithm for path tracking control. When driving on a wet asphalt pavement at a speed of 70 km·h-1, the maximum lateral error reduces by 30% compared with a vehicle that only uses model predictive control algorithm for path tracking control. When driving on an icy and snow pavement at a speed of 55 km·h-1, the maximum lateral error reduces by 16% compared with a vehicle that only uses model predictive control algorithm for path tracking control. Therefore, the proposed control method can effectively improve the path tracking accuracy. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号