# 基于 Plaxis3D 的大断面、小净距隧道开挖全过程数值分析方法

郭洪雨 钟方杰 孙 飞 李长俊 郑云辉 (浙江数智交院科技股份有限公司 杭州 310030)

[摘 要] 截至目前,浙江省双向八车道小净距公路隧道的设计建造案例并不多,富阳市大盘山隧道出口段(双向八车道,开挖宽度 21.3m,开挖高度 14.16m,最小净距约 10m)作为大断面小净距隧道的典型代表,洞口段又存在较长距离的含砾粉质黏土,因此有必要针对该工程开展断面小净距隧道开挖全过程的数值分析,为工程设计和施工提供重要参考,以期为浙江省同类隧道设计施工提供工程经验积累。

[关键词] 大盘山隧道; 大断面; 小净距; Plaxis; 数值模拟

## 0 引言

由于普通分离式双洞隧道的接线问题以及 连拱隧道在工艺、工期、造价及质量方面显现 出的问题,于是便出现了小净距隧道这种结构 型式。小净距隧道是介于双洞分离式隧道和连 拱隧道之间的一种结构型式。小净距隧道相对 于普通分离式双洞隧道和连拱隧道有以下优点: 第一,其造价和施工工艺同普通分离式双洞隧 道相比相差不大,同连拱隧道相比其造价要低 得多;第二,施工工艺相对简单,工期短;第 三,采用小净距隧道有利于公路整体线形和线 形的优化。

本文依托浙江省富阳市大盘山大断面、小 净距公路隧道工程(双向八车道,净宽 17.75m,净高5.0m,双洞间净距10~16m),该 工程作为富阳市主城区南北向主干路的重要组 成部分,出入口均为含砾粉质黏土地层,且均 穿越大量民房、高楼等建(构)筑物,施工中 必须严格控制隧道围岩及支护变形,保障工程 安全并减小对周边环境的不利影响。

#### 1 国内外研究现状

为保证小净距隧道施工状态及运营期的稳定,施工的重点是尽可能维持两个隧道围岩— 衬砌承载体系的完整性,保证中夹岩有足够的 强度及稳定性。国内外针对在小净距隧道施工 力学方面开展了大量研究。

Ghaboussi J 等<sup>[1]</sup> 采用有限元模拟了小净距 平行隧道,对地表沉降、轴力、洞周应力和中 夹岩柱应力等进行分析。指出小净距平行隧道 相互作用影响范围主要为中夹岩柱区域,相互 影响程度与隧道净距呈反比。Solim. E<sup>[2]</sup>基于平 面应变理论,采用三维有限元进行了小净距隧 道开挖施工模拟研究。

Lo K. W 等<sup>[3]</sup>以新加坡某位于回填土、海相 粘土硬冲积层中的四孔平行小净距隧道为依托, 根据土体水平位移,垂直位移等多项参数的量 测结果,开展了多孔小净距隧道相互影响研究。 Kuriyama H 等<sup>[4]</sup>运用数值模拟技术,研究了福 岗市地铁 3 号线双线小净距隧道的岩柱加固及 监控量测技术。Chapman DN 等<sup>[5]</sup>利用室内模型 试验,对软岩中近距离多孔隧道施工导致的地 层位移进行了研究。

国内朱敬民等<sup>[6]</sup>较早开展双线隧道研究, 采用模型试验的研究方法,提出层状岩体中开 挖洞室时围岩的扰动范围为一椭圆形;复合式 衬砌的破坏亦属剪切破坏,破坏受变形控制; 二次模注衬砌能起到受力结构的作用,其施作 时间以收敛位移稳定为宜;喷锚支护并不能改

收稿日期: 2020-12-08

作者简介:郭洪雨 (1981-),男,高级工程师,主要从事隧道工程设计及相关科研工作。

# • 浙江圭ā千技 •

变围岩的受力状态,但却能改善围岩的力学性能,提高其抵抗变形的能力并改变围岩破坏的 突然性等重要结论。

国内外针对大断面小净距隧道的研究已经 较为丰富,但大多集中在理论分析领域,且相 关数值分析研究大多没有考虑隧道全过程分步 开挖的影响。因此,为了更加贴合工程实际, 本文依托大盘山隧道工程,开展大断面、小净 距隧道全过程施工力学分析,探求双侧壁七步 开挖工法下大断面、小净距隧道支护的受力演 变过程,并对该隧道工程开展安全性评价。

### 2 模型建立与参数选取

# 2.1 模型建立

采用 Plaxis3D 地层设计模块,根据纵断面 地层资料和实际施工情况,建立两层地层,上 层为含砾粉质黏土,下层为强风化砂岩,该地 层模型未考虑地表坡度,此后的模型将在此基 础上考虑地表坡度,做精细化处理。

计算过程中,考虑了开挖引起的应力释放,按照围岩与初期支护共承受 80%荷载计算(根据 2018 版公路隧道结构设计规范条文说明 9.2.5,按照保守设计,施工过程二衬未施作时若对初期支护进行验算,围岩与初期支护共同承担的荷载比例范围 30%~100%)。

地层模型尺寸为长宽高=140×40×60m,即地 层厚度 60m,其中埋深按照出口段 SB5-JQa 衬砌 段最大埋深计算约 20m;纵向按照双侧壁 7 步开 挖工法考虑,为避免模型边界条件的不利影响, 故模型纵向尺寸为 40m;地层宽度为避免模型水 平方向模型边界的不利影响,隧道左右侧均向两 侧扩展 3 倍洞径,故模型水平尺寸为 140m。



图1 地层模型



图 2 模型隧道位置及锚杆模型示意图

采用 Plaxis3D 专用的 TunnelDesigner (隧道 设计器),对隧道断面形式及支护结构进行建 模,隧道断面形式为 SB5-JQa 型衬砌断面,双 向八车道,建筑限界净宽 17.75m,净高 5.0m, 双洞间净距 10~16m。初期支护厚度 32cm,双 侧壁厚度 32cm,系统锚杆直径 25mm,纵环向 间距为 50×100cm。初期支护和临时支护均为 C25 喷射混凝土+双层钢筋网 (直径 6mm,间距 15×15cm) +25b 号工字钢拱架 (间距 50cm), 断面尺寸、初期支护、临时支护设计参数如图 3、图 4 所示。



图 3 隧道断面轮廓模型



图 4 隧道初期支护、临时支护、锚杆模型

浙江交益科技 •

#### 2.2 参数选取

| 表 1 模型参数选取 |                            |                   |              |                 |      |                      |
|------------|----------------------------|-------------------|--------------|-----------------|------|----------------------|
| 类别         | 重度<br>(kN/m <sup>3</sup> ) | 弾性<br>模量<br>(GPa) | 内聚力<br>(kPa) | 内摩<br>擦角<br>(°) | 泊松比  | 锚固侧<br>摩阻力<br>(kN/m) |
| 含砾粉<br>质黏土 | 18                         | 0.02              | 60           | 25              | 0.4  | _                    |
| 强风化砂岩      | 22                         | 1                 | 100          | 40              | 0.35 | _                    |
| 初期支护       | 26                         | 30                | —            | —               | 0.2  | —                    |
| 临时支护       | 26                         | 30                | —            | —               | 0.2  | —                    |
| 中空注浆<br>锚杆 | 30                         | 120               | _            | _               | 0.2  | 35                   |

依据上述隧道设计参数, Plaxis3D 中隧道初 期支护采用 SHELL 单元模拟, 双侧壁临时支护 也采用 SHELL 单元, 由于锚杆为中空注浆锚杆, 可同时提供抗弯和摩擦锚固力,因此系统锚杆和临时支护锚杆采用 PILE 单元模拟,左右洞在 靠近中夹岩柱一侧的中空注浆锚杆长度为 6m, 系统锚杆(中空注浆锚杆)长度为 5m,临时支 护处的中空注浆锚杆为 3m。锚固侧摩阻力取 35kN/m(参考灌注桩在黏土中的桩侧摩阻力)。

## 2.3 计算步骤

隧道施工工法为双侧壁 7 步开挖,施工工 序如下图所示。每个分区开挖的纵向间距为 10m,上中下台阶之间纵向间隔距离 6m,先行 洞与后行洞之间的纵向距离为 40m,每个开挖 进尺为 1m。计算步骤为:地应力平衡→分步开 挖(应力释放)→分步支护……



8



a) 有限元模型分布开挖过程模拟



b) 锚杆及支护施作过程模拟

图 7 双侧壁 7 步开挖模型 (三维视角)

- 3 计算结果分析
- 3.1 围岩变形及塑性区





图 8 右洞两侧导洞开挖后围岩竖向沉降 1.6cm

图 9 右洞开挖完成 3.8em, 左洞双侧导坑开挖后 竖向沉降 1.2em





图 10 右洞围岩拱顶沉降 4.2cm, 左洞拱顶沉降 0.2cm 图 11 右洞拱顶沉降 4.1cm, 左洞拱顶沉降 4cm



图 12 围岩变形迹线

• 浙江圭备千技 •

由上图所示, 在隧道开挖进程中, 左、右 洞围岩拱顶下沉位移均逐渐增大,右洞拱顶下 沉最大值为 4.1cm, 左洞拱顶下沉最大值为 4cm, 先行洞(右洞)的变形比后行洞(左洞) 要大。

科技创新 iichuangxin

从围岩变形迹线来看,围岩扰动较为明显 的区域包括隧道洞室四周以及中夹岩柱区域。 其中,洞室上方和下方围岩向内挤压,是支护 结构需要抵抗的主要荷载,同时观察到,中夹 岩柱存在整体向下的位移,约2-3cm 左右,中 夹岩柱土体的垂直变形在泊松效应的作用下. 会在水平方向上形成一种将两个洞室分开的趋 势力,这与下文图 14 中隧道初期支护结构水平 位移的分布结果基本一致。



由上图可知, 在隧道开挖过程中, 由于隧 道开挖进尺短,中空注浆锚杆设计密集,因此 3.2 初期支护变形及受力分析 中夹岩柱和隧道周围的塑性区并不明显, 围岩 塑性区主要集中在掌子面前方,实际工程中也

由上图可知,在开挖过程中,左右洞的水 平位移逐渐出现非对称特征,例如右洞右侧水

平扩大位移+1.27cm, 左侧水平扩大位置-

3.5mm, 右洞呈现向右的整体变形; 同样的,

表 2 初期支护拱顶竖向位移变化曲线

图 13 围岩塑性区分布

曾报告出现过掌子面前方的局部小范围塌方。

- - (1) 水平收敛位移



图 14 右洞成洞水平扩大位移+1.3cm, 左洞成洞水平扩大位移+1.1cm

左洞也出现向左的整体变形。先行洞 (右洞) 的支护结构水平变形大于后行洞。

(2) 竖向收敛位移

表 3 初期支护仰拱竖向位移变化曲线



浙江交益科技 。

由上图可知,由于隧道开挖、施加支护二 者间不可避免的时间间隔,将产生地应力释放, 由图中曲线可知,在进行初期支护施工之前, 围岩产生了一定的收敛变形,其中,地应力释 放引起的拱顶沉降位移为1.33cm,地应力释放 引起的仰拱抬升位移为3.16cm。因此在施加初 期支护后,拱顶初期支护沉降位移为2.67cm。

在计算模拟过程中,初期支护施加的瞬间 位移应为0,但程序没有自动将初期支护的位移 清零,因此位移云图中输出的位移量应当减去 地应力释放产生的位移,则为支护结构施加后 的收敛变形,特此说明。



图 15 右洞成洞后竖向收敛位移 7.1-1.33-3.16=2.61cm



图 16 右洞竖向收敛位移 7.9-1.33-3.16=3.41cm





图 17 右洞竖向收敛位移 8.1-1.33-3.16=3.61cm, 左洞竖向收敛位移 6.7-1.33-3.16=2.21cm



图 18 右洞竖向收敛位移 8.1-1.33-3.16=3.61cm, 左洞竖向收敛 7.9-1.33-3.16=3.41cm

由上图可知,隧道开挖过程中初期支护拱 顶最大下沉位移为3.6cm,出现在拆除临时支撑 的时候;左洞拱顶最大下沉位移为3.41cm,同 样出现在拆除临时支护的时候。

(3) 衬砌内力及安全系数



由上图可知, 在隧道分步开挖过程中, 隧 道初期支护及临时支护的轴力弯矩均逐渐增大。 整体来看, 先行洞的弯矩轴力要大于后行洞, 说明先行洞承担的荷载更多。

此外,在后行洞开挖过程中,两洞结构内 力逐渐呈现非对称特征,在两洞中夹岩柱附近 的支护结构内力较大(拱脚、墙脚处最为明 显),说明小净距条件下中夹岩柱土体的扰动增 大了结构荷载。

根据轴力弯矩可计算得到先行洞与后行洞的 安全系数,所有安全系数均满足要求,其中墙脚 处安全系数较小,完整安全系数表详见下表。

由表4、表5可知,先行洞隧道初期支护安 全系数在相同位置上普遍小于后行洞,即与后 行洞相比,先行隧道衬砌结构受力更加不利; 此外,无论是先行洞还是后行洞,安全系数最 小值均位于墙脚处,尤其是先行洞的左墙脚、 后行洞的右墙脚,且左右洞隧道衬砌安全系数 分布状态呈反对称现象,这是由于小净距隧道 开挖导致中夹岩柱及其上方的围岩松散荷载更 大,造成左右侧荷载不对称。

3.3 锚杆轴力

(1) 系统锚杆

由于模型部件数量过大,计算机算力不够, 计算缓慢,因此锚杆数量采用一定程度的等效 处理,采用将锚杆直径扩大1倍、减少锚杆单 元密度的方式减少锚杆总数,因此下图中所述 的锚杆轴力,是实际锚杆轴力的两倍。文本表 述过程中已经进行换算处理。

表 4 先行洞 (右洞) 成洞后初期支护安全系数表

| 位置                     | N<br>(kN) | M<br>( kN. m) | 判断大小<br>偏心 | 安全系数 |  |
|------------------------|-----------|---------------|------------|------|--|
| 拱顶                     | 1586      | 15.5          | 小偏心        | 4.15 |  |
| 左拱肩                    | 1915      | 171.9         | 小偏心        | 2.18 |  |
| 左拱腰                    | 2173      | 68.07         | 小偏心        | 2.62 |  |
| 左拱脚                    | 2285      | 46.5          | 小偏心        | 2.68 |  |
| 左墙脚                    | 2644      | 337.9         | 小偏心        | 1.35 |  |
| 仰拱左侧                   | 1415      | 222. 1        | 大偏心        | 2.05 |  |
| 仰拱                     | 1219      | 41.47         | 小偏心        | 4.60 |  |
| 仰拱右侧                   | 1523      | 228.8         | 大偏心        | 2.00 |  |
| 右墙脚                    | 2703      | 365           | 大偏心        | 1.25 |  |
| 右拱脚                    | 2336      | 27.15         | 小偏心        | 2.78 |  |
| 右拱腰                    | 2262      | 70. 59        | 小偏心        | 2.52 |  |
| 右拱肩                    | 2485      | 167.2         | 小偏心        | 1.88 |  |
| 表5 后行洞(左洞)成洞后初期支护安全系数表 |           |               |            |      |  |

| 位署   | Ν    | М        | 判断大小 | 安全系数  |  |
|------|------|----------|------|-------|--|
| 卫生   | (kN) | ( kN. m) | 偏心   |       |  |
| 拱顶   | 1646 | 14. 78   | 小偏心  | 4.02  |  |
| 左拱肩  | 2532 | 175.4    | 小偏心  | 1.82  |  |
| 左拱腰  | 2319 | 62.96    | 小偏心  | 2.52  |  |
| 左拱脚  | 2437 | 12.83    | 小偏心  | 2.79  |  |
| 左墙脚  | 3252 | 396.3    | 小偏心  | 1.12  |  |
| 仰拱左侧 | 1551 | 237      | 大偏心  | 1.92  |  |
| 仰拱   | 1339 | 29.3     | 小偏心  | 4. 52 |  |
| 仰拱右侧 | 1599 | 221.7    | 大偏心  | 2.07  |  |
| 右墙脚  | 2176 | 360.4    | 大偏心  | 1.25  |  |
| 右拱脚  | 2323 | 31.62    | 小偏心  | 2.76  |  |
| 右拱腰  | 2254 | 68.51    | 小偏心  | 2.54  |  |
| 右拱肩  | 2478 | 147.8    | 小偏心  | 1.96  |  |



图 27 右洞锚杆轴力最大值 80kN, 左洞锚杆轴力 87.5kN

2021年第1期

| • | 尚 | νz | t | 1 | 种 | 拔 | • |
|---|---|----|---|---|---|---|---|
|---|---|----|---|---|---|---|---|

由上图可知,右洞锚杆轴力小于左洞,右 洞锚杆轴力在开挖完成后为80kN,左洞锚杆轴 力为87.5kN;隧道分布开挖过程中,随着断面 的逐渐增大,隧道高跨比逐渐变小,因此拱顶 下沉趋势,拱脚和墙脚呈水平扩大趋势,所以 隧道上半部分锚杆受拉,最大值出现在拱顶; 而下半部分锚杆受压,最大值出现在墙脚。

(2) 临时支护锚杆



**執力 № (放大 0.0180 倍)** 最大值 = 103.3 kM (単元 18668 在 节点 221035) 最小值 = -22.26 kM (単元 11195 在 节点 238234)

图 28 右洞临时支护锚杆轴力 25.8kN



图 29 左洞临时支护锚杆轴力 26.1kN

由上图可知,隧道分步开挖中施作的临时 支护锚杆轴力,先行洞临时锚杆轴力最大值为 25.8kN,后行洞临时锚杆轴力为 26.1kN,锚杆 轴力最大值均分布在导洞最宽处,且先行洞临 时支护锚杆轴力要小于后行洞。 4 结论

(1)大断面、小净距隧道开挖过程中,隧 道初期支护随着施工阶段的变化而变化,在施 工过程中,先行洞受力更为不利,双侧壁临时 支护的弯矩较大,因此,应注意加强对先行洞 和双侧壁临时支护的安全性验证工作。

Kcjichuangx

(2)由于小净距隧道开挖过程中,中夹岩 柱及其上方的围岩松散压力较大,隧道两侧松 散压力较小,因此造成隧道荷载不对称,从计 算结果来看,左、右洞荷载及安全系数均呈反 对称现象。

(3)大断面、小净距隧道开挖过程中,不同工程的地应力水平、地层岩性、施工工法等的不同均会影响隧道支护结构的受力情况,本算例仅供参考,为其他类似工程提供借鉴。

#### 参考文献

- Ghaboussi Jamshid, Ranken Randall E, Karshenas Manuchehr, editors. Analysis of Subsidence over Soft-Ground Tunnels. Evaluation and Prediction of Subsidence; 1978: ASCE.
- [2] Solim. E, 张佳文. 小间距双线隧道的二维与三维分析 [J]. 探矿工程译丛, 1995 (2): 62-64.
- [3] Lo K. W, Chong L. K, Leung L. F. Field Instrumentation of a Multiple Tunnels Interaction Problem [J]. Tunnels and Tunnelling, 1998, 18: 4–16.
- [4] Kuriyama Hiroshi, Koga Tokuji, Ogata Takaya, NAKAMURA Hidemitsu, KAMBAYASHI Takeshi, editors. The Design and Construction of Pillar Reinforcement at Horizontal Twin Tunnels. Proceedings of Tunnel Engineering, JSCE; 2000: Japan Society of Civil Engineers.
- [5] Chapman DN, Ahn SK, Hunt D VL. Investigating Ground Movements Caused by the Construction of Multiple Tunnels in Soft Ground Using Laboratory Model Tests [J]. Canadian Geotechnical Journal, 2007, 44 (6): 631–643.
- [6]朱敬民,王国森.重庆菜袁公路双线隧道模拟研究[J]. 中国土木工程学会隧道及地下工程学会第五届年会论文, 1988.

