首页 | 官方网站   微博 | 高级检索  
     

沥青混凝土高温摊铺下钢梁支座体系温度效应
引用本文:钱振东,刘阳,杨亚林,刘强,薛永超,陈磊磊.沥青混凝土高温摊铺下钢梁支座体系温度效应[J].中国公路学报,2022,35(8):194-201.
作者姓名:钱振东  刘阳  杨亚林  刘强  薛永超  陈磊磊
作者单位:1. 东南大学 智能交通运输系统研究中心, 江苏 南京 211189;2. 江西省赣鄂皖路桥投资有限公司, 江西 九江 332099
基金项目:国家自然科学基金项目(51878167,52008102);江苏省自然科学基金项目(BK20200384);江西省交通厅科技项目(JJYQ-ZX-032)
摘    要:沥青混凝土高温摊铺所引起的钢桥正交异性板结构温度效应备受关注,为研究高温摊铺引发的钢梁支座体系温度效应,依托九江长江大桥的公路桥加固改造工程,采用生死单元法模拟了钢桥面沥青混凝土动态摊铺施工过程,建立了密支座钢梁摊铺温度场模型,结合现场温度监测数据确立了高温摊铺下钢梁节段的温度场时空分布规律,在此基础上,仿真模拟了不同工况下钢梁支座体系的力学响应,并剖析了高温摊铺下支座体系温度效应的影响因素。研究结果表明:沥青混凝土高温摊铺下钢桥面板的温度先急剧上升,摊铺完成约12 min后逐渐下降直至稳定,夏季热拌环氧沥青混凝土(摊铺温度为185℃)摊铺下钢桥面板的最高温度达到96.1℃,钢梁节段的竖向最大温差达到55℃;高温摊铺会导致钢梁支座体系产生较大的支反力,摊铺宽度增大,支反力显著提高,当摊铺宽度超过5 m时,支座最大竖向拉力将超出其承载能力,当摊铺宽度超过8 m时,最大横向支反力将超出支座承载能力;对于纵向有连续固定支座的钢梁节段,纵向连续固定支座数目对竖向支反力和横向支反力的影响较小,但高温摊铺时会产生远超支座承载能力的纵向支反力,支座结构存在安全隐患。研究可为类似钢梁支座体系的沥青混凝土摊铺施工方案设计和支座处置提供理论支撑。

关 键 词:桥梁工程  钢桥面铺装  生死单元法  密支座体系  高温摊铺  温度效应  
收稿时间:2020-08-04

Temperature Effect Analysis of Bridge Bearings in a Steel Beam During High-temperature Asphalt Concrete Pavement Paving
QIAN Zhen-dong,LIU Yang,YANG Ya-lin,LIU Qiang,XUE Yong-chao,CHEN Lei-lei.Temperature Effect Analysis of Bridge Bearings in a Steel Beam During High-temperature Asphalt Concrete Pavement Paving[J].China Journal of Highway and Transport,2022,35(8):194-201.
Authors:QIAN Zhen-dong  LIU Yang  YANG Ya-lin  LIU Qiang  XUE Yong-chao  CHEN Lei-lei
Affiliation:1. Intelligent Transportation System Research Center, Southeast University, Nanjing 211189, Jiangsu, China;2. Jiangxi Gan-E-Wan Road Bridge Investment Co. Ltd., Jiujiang 332099, Jiangxi, China
Abstract:The temperature effect induced by high-temperature asphalt concrete has an adverse influence on the stability of orthotropic steel bridge decks.This research aims to investigate the temperature effect of high-temperature asphalt concrete pavement paving on the structural safety of steel bridge bearings.Based on the strengthening reconstruction project of the Jiujiang Yangtze River Bridge,the element deletion method was used to simulate the dynamic paving of asphalt concrete,and a temperature field model of a steel beam model with densely distributed bridge bearings was developed.The temperature field characteristics of the steel beam were analyzed according to the results of numerical simulation and field monitoring,and,by calculating the mechanical responses of bridge bearings under different conditions,the temperature effect of the bridge bearings during paving and its influencing factors were investigated.The results show that the temperature of the steel bridge deck increases rapidly at first,and then it decreases at 12 min after paving.The highest temperature of the steel bridge deck is 96.1℃ during the paving of hot-mixed epoxy asphalt concrete (with a paving temperature of 185℃) in summer,and the maximum temperature difference along the vertical of the steel beam is 55℃.Large reaction forces of bridge bearings are present during paving,and the reaction forces increase dramatically with the increase in pavement width.The maximum vertical tensile force would exceed the allowable range of bridge bearings if the width of the paving area is >5 m,and the maximum transversal reaction force would exceed the allowable range of bridge bearings if the width of the paving area is >8 m.For a steel beam with several continuous fixed bearings along the longitudinal direction,the number of continuous fixed bearings has little influence on the vertical and transverse reaction forces,but the longitudinal reaction force significantly exceeds the allowable range of bridge bearings,which could pose a safety hazard.The findings of this research could provide theoretical support for the paving scheme of asphalt concrete and bridge-bearing disposal for similar bridge-bearing systems.
Keywords:bridge engineering  steel bridge deck pavement  element deletion method  dense-distributed bridge bearing system  high-temperature pavement paving  temperature effect  
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号