首页 | 官方网站   微博 | 高级检索  
     

螺旋箍筋约束高强混凝土柱轴心受压性能试验研究
引用本文:郑文忠,张洁,王刚,王英.螺旋箍筋约束高强混凝土柱轴心受压性能试验研究[J].中国公路学报,2022,35(6):22-35.
作者姓名:郑文忠  张洁  王刚  王英
作者单位:1. 哈尔滨工业大学 结构工程灾变与控制教育部重点实验室, 黑龙江 哈尔滨 150090;2. 哈尔滨工业大学 土木工程智能防灾减灾工信部重点实验室, 黑龙江 哈尔滨 150090
基金项目:国家自然科学基金项目(51678190)
摘    要:为探究螺旋箍筋约束高强混凝土柱的轴心受压性能,开展了42根螺旋箍筋约束高强混凝土圆柱的轴压试验,研究了混凝土标准立方体抗压强度(58.0~90.6 MPa)、箍筋屈服强度(480~1 219 MPa)、体积配箍率(1.00%~1.60%)与箍筋间距(45~80 mm)对螺旋箍筋约束混凝土柱受压承载力和变形能力的影响。试验结果表明:箍筋约束混凝土在达到峰值压应力时,约束箍筋可能达不到屈服;约束箍筋的强度和体积配箍率相同时,随着高强混凝土强度的增高,约束混凝土达到峰值压应力时箍筋的拉应变减小;混凝土轴心抗压强度、箍筋屈服强度相同时,随着体积配箍率的提高,约束混凝土峰值压应变增大,相应的横向应变也随之增大,箍筋拉应变也增大。基于试验结果,考察了峰值压应力下箍筋拉应变与体积配箍率、混凝土强度、箍筋屈服强度和箍筋间距之间的关系,建立了峰值压应力下约束箍筋拉应变计算公式。拟合得到了约束混凝土峰值压应力fcc、峰值压应变εcc、下降段曲线的特征参数(峰值压应力后85%峰值应力下的轴向压应变εc85、50%峰值压应力的轴向压应变εc50)的计算公式。给出了考虑体积配箍率、混凝土轴心抗压强度、箍筋间距和箍筋屈服强度影响的箍筋约束高强混凝土的轴心受压应力-应变关系模型。

关 键 词:桥梁工程  螺旋箍筋约束高强混凝土  试验研究  约束混凝土应力-应变关系  峰值压应力  体积配箍率  
收稿时间:2021-01-27

Experimental Study on Axial Compression Behavior of High-strength Concrete Columns Confined by Spiral Stirrups
ZHENG Wen-zhong,ZHANG Jie,WANG Gang,WANG Ying.Experimental Study on Axial Compression Behavior of High-strength Concrete Columns Confined by Spiral Stirrups[J].China Journal of Highway and Transport,2022,35(6):22-35.
Authors:ZHENG Wen-zhong  ZHANG Jie  WANG Gang  WANG Ying
Affiliation:1. Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China;2. Key Lab of the Smart Prevention and Mitigation of Civil Engineering Disasters, Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
Abstract:The effects of concrete standard cube compressive strength (58.0-90.6 MPa), stirrup yield strength (480-1 219 MPa), stirrup volume ratio (1.00%-1.60%), and stirrup spacing (45-80 mm) on the bearing capacity and deformation capacity of high-strength concrete columns confined by spiral stirrups were studied through axial compression tests of 42 column specimens. The test results show that the confining stirrups may not yield when the confined concrete reaches the peak compressive stress. When the yield strength and volume ratio of the stirrups remain the same, the tensile strain in the stirrups decreases with increasing concrete strength as the confined concrete reaches the peak compressive stress. When the axial compressive strength of the unconfined concrete and the yield strength of the stirrups remain the same, an increase in the stirrup volume ratio causes increases in the peak compressive strain in the confined concrete, the corresponding transverse strain, and the tensile strain in the stirrups. The test results were then analyzed to determine the relationship between the stirrup tensile strain, stirrup volume ratio, concrete strength, stirrup yield strength, and stirrup spacing under peak compressive stress to establish a formula for the stirrup tensile strain. The formulas for the peak compressive stress, peak compressive strain, and characteristic parameters (axial compressive strain at 85% peak stress following peak compressive stress and axial compressive strain at 50% peak compressive stress following peak compressive stress) of the confined concrete were obtained by fitting. The stress-strain relationship of high-strength concrete columns confined with stirrups was finally derived considering the influence of the stirrup volume ratio, concrete axial compressive strength, stirrup spacing, and stirrup yield strength.
Keywords:bridge engineering  high strength concrete confined by spiral stirrups  experimental study  stress-strain curve of confined concrete  peak compressive stress  volume stirrup ratio  
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号