首页 | 官方网站   微博 | 高级检索  
     

基于驾驶人转向意图的双电机驱动电动汽车稳定性控制策略
引用本文:王姝,赵轩,余强,余曼.基于驾驶人转向意图的双电机驱动电动汽车稳定性控制策略[J].中国公路学报,2022,35(1):334-349.
作者姓名:王姝  赵轩  余强  余曼
作者单位:1. 长安大学汽车学院, 陕西 西安 710064;2. 西安航空学院车辆工程学院, 陕西 西安 710077
基金项目:国家自然科学基金项目(52002034);陕西省科技重大专项项目(2020zdzx06-01-01);霍英东青年教师基金项目(171103);陕西省重点产业创新链(群)项目(2020ZDLGY16-01,2020ZDLGY16-02);陕西省自然科学基础研究计划青年项目(2020JQ-381,S2020JQ-913)
摘    要:为了使双电机驱动电动车在车辆稳定性控制过程中能够精确解读驾驶意图,使车辆实际行驶状态与驾驶意图期望的车辆行驶状态尽可能相符合,提出一种基于驾驶人意图辨识的稳定性控制策略。利用基于支持向量机递归特征消除(SVM-RFE)得到的特征参数构建基于长短期记忆(LSTM)模型的驾驶人转向意图辨识模型;基于转向意图识别结果,以方向盘的扭矩和角速度为计算参数,利用转向急迫程度系数建立考虑驾驶人转向意图的车辆稳定性控制修正参考模型,基于滑模控制理论构建车辆稳定性控制上层控制器。以车辆轮胎工作负荷率平方和最小为优化目标,考虑轮胎附着条件、电机及制动系统性能、电机运行状态的约束条件,构建车辆稳定性控制下层控制器。最后利用基于A&D5435半实物仿真系统的双电机驱动电动汽车试验平台,在双移线工况、单移线工况下进行实车验证。研究结果表明:双移线工况下在稳定性系统的作用下横摆角速度最大值为-18.953(°)·s-1,与无稳定性控制相比减小了39.87%,质心侧偏角最大值为4.568°,与无稳定性控制相比减小了54.08%;单移线工况下在稳定性系统的作用下横摆角速度最大值为21.76(°)·s-1,与无稳定性控制减小了65.3%,质心侧偏角最大值为5.208°,与无稳定性控制减小了92.6%。;提出的车辆稳定性控制策略能够正常工作,有效改善了车辆的行驶稳定性。

关 键 词:汽车工程  稳定性控制  试验研究  转向意图  双电机驱动电动汽车  
收稿时间:2020-04-14

Vehicle Stability Control Strategy for a Dual-motor Drive Electric Vehicle Considering Driver Steering Intention
WANG Shu,ZHAO Xuan,YU Qiang,YU Man.Vehicle Stability Control Strategy for a Dual-motor Drive Electric Vehicle Considering Driver Steering Intention[J].China Journal of Highway and Transport,2022,35(1):334-349.
Authors:WANG Shu  ZHAO Xuan  YU Qiang  YU Man
Affiliation:1. School of Automobile, Chang'an University, Xi'an 710064, Shaanxi, China;2. School of Vehicle Engineering, Xi'an Aeronautical University, Xi'an 710077, Shaanxi, China
Abstract:To interpret accurately a driver's intention during vehicle stability control of a dual-motor drive electric vehicle and to ensure the actual vehicle state conforms to the driver's intention as much as possible, this study proposed a stability control strategy for dual-motor drive electric vehicles considering driver steering intention. A driver steering intention identification model based on a long short-term memory model was constructed using feature parameters obtained from support vector machine-recursive feature elimination. Based on the results of steering intention identification, the steering urgency coefficient, which is taking the steering wheel torque and angel velocity as the calculation parameters, was used to establish a modified reference model of vehicle stability control that considers a driver's steering intention. In addition, the upper controller of the vehicle stability control was constructed based on the slide model control method. Taking the minimum sum of the square of the working load rate of the vehicle tires as the optimization objective, and considering the adhesion conditions of the tires as well as the performance of the motor and braking system and finally the constraint conditions of the motor state, the lower controller of the vehicle stability control was constructed. Lastly, double and single lane change tests were conducted using a dual-motor drive electric vehicle test platform based on the A&D5435 semi-physical simulation system. In the double lane change test, the maximum yaw rate and maximum sideslip angle are -18.953 (°)·s-1 and 4.568°, respectively, under the control of the proposed stability system, which are reduced by 39.87% and 54.08%, respectively, when compared with those under non-stability control. In the single lane change test, the maximum yaw rate and maximum sideslip angle are 21.76 (°)·s-1 and 5.208°, respectively, under the control of the proposed stability system, which are reduced by 65.3% and 92.6%, respectively, when compared with those under non-stability control. The results show that the proposed vehicle stability control strategy can work normally and can improve a vehicle's running stability.
Keywords:automotive engineering  vehicle stability control  experimental research  steering intention  dual-motor drive electric vehicle  
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号