首页 | 官方网站   微博 | 高级检索  
     

旋转压实成型水泥稳定类基层材料试验
引用本文:刘栋,李立寒.旋转压实成型水泥稳定类基层材料试验[J].中国公路学报,2019,32(11):118-128.
作者姓名:刘栋  李立寒
作者单位:1. 江西省交通科学研究院, 江西 南昌 330200;2. 同济大学 道路与交通工程教育部重点实验室, 上海 201804
基金项目:江西省交通运输厅科技项目(2018Z0002,2017H0009);江西省科技平台建设项目(20171BCD40017)
摘    要:针对固体废料用于水泥稳定类基层材料时存在压实过程中破碎严重且压实含水率偏高的问题,分别进行水泥稳定碎石(CSM)和掺城市生活垃圾焚烧炉渣(IBA)的水泥稳定炉渣碎石(CSMI)旋转压实试验,研究旋转压实试验参数(垂直压力和压实次数)对试件旋转压实过程、矿料级配衰变、压实标准、强度和模量等物理力学指标的影响,阐述旋转压实机理,探讨旋转压实与击实、静压和现场压实的差异,分析旋转压实成型CSM和CSMI的适用性。试验结果表明:旋转压实过程中CSM和CSMI的密度、剪切应力在压实50次内快速提高,200次后达到稳态,可分为初压(0~50次)、复压(50~200次)和终压(200次之后)3个阶段;较高的压实次数和垂直压力对试件内压实功传递、骨架嵌挤及密度、强度和模量有利,并可降低压实含水率,但垂直压力超过400 kPa时压实功明显增大,矿料级配衰变加剧,600 kPa后劈裂强度降低;较高的IBA掺量和含水率对CSMI压实特性的影响较大,初压压实功低,复压和终压需较CSM略大的压实功,但旋转压实试验参数对CSM和CSMI物理力学性能的影响程度相近,可采用相同试验参数;相比击实和静压,旋转压实可降低矿料级配衰变和压实含水率,减弱IBA对CSMI性能的不利影响;旋转与现场压实效果存在较好一致性,CSMI(IBA掺量为30%)与CSM基层的服役性能相近。

关 键 词:道路工程  水泥稳定碎石  试验研究  旋转压实  试验参数  城市生活垃圾焚烧炉渣  
收稿时间:2018-10-17

Experiment on Gyratory Compaction of Cement Stabilized Base Course Materials
LIU Dong,LI Li-han.Experiment on Gyratory Compaction of Cement Stabilized Base Course Materials[J].China Journal of Highway and Transport,2019,32(11):118-128.
Authors:LIU Dong  LI Li-han
Affiliation:1. Jiangxi Transportation Institute, Nanchang 330200, Jiangxi, China;2. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China
Abstract:When solid wastes are used in a cement stabilized macadam (CSM) base, they become severely broken during the compaction process, and the compaction moisture content of CSM is high. Thus, in this study, gyratory compaction (GC) tests of both CSM and CSM containing municipal solid waste incineration bottom ash (IBA) (called CSMI) were conducted. The effects of GC test parameters (i.e., number of gyrations and vertical pressure) on the physical and mechanical indices of CSM and CSMI, including the compaction process, graduation change, and strength and modulus, were analyzed. The GC mechanism was illustrated, and the differences between GC and Proctor, static, and field compactions were discussed. On this basis, the applicability of GC for CSM and CSMI was analyzed. The results show that the density and shear stress increase rapidly within 50 gyrations and that they both reach a steady state after 200 gyrations. The GC process can be divided into three compaction stages:initial, secondary, and final compaction (i.e., 0-50, 50-200, and>200 gyrations, respectively). A higher number of gyrations and vertical pressure are favorable to the transfer of compaction effort, the interlocking capability of aggregates, and the density, strength, and modulus of CSM and CSMI specimens. They also help reduce the compaction moisture content. However, when the vertical pressure is over 400 kPa, the compaction effort significantly increases, and the aggregate crushing begins to intensify. The specimen's tensile strength decreases after the vertical pressure exceeds 600 kPa. Higher IBA and moisture contents both have greater effects on the compaction characteristics of CSMI. The initial compaction effort in CSMI is less than that of CSM, whereas the secondary and final compaction efforts are slightly greater. However, the effects of GC test parameters on the physical and mechanical properties of CSM and CSMI are similar, and the same test parameters can be adopted. Compared to Proctor and static compactions, GC can reduce aggregate crushing, compaction moisture content, and the adverse effects of IBA on the performance of CSMI. A good consistency exists between GC and field compaction, and the road performance of CSMI base approximates that of the CSM base when the IBA dosage is 30%.
Keywords:road engineering  cement stabilized macadam  experimental research  gyratory compaction  test parameters  municipal solid waste incineration bottom ash  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号