首页 | 官方网站   微博 | 高级检索  
     

深中通道伶仃洋大桥(主跨1 666 m)抗风性能研究
引用本文:赵林,王骑,宋神友,陈伟乐,吴明远,廖海黎,葛耀君.深中通道伶仃洋大桥(主跨1 666 m)抗风性能研究[J].中国公路学报,2019,32(10):57-66.
作者姓名:赵林  王骑  宋神友  陈伟乐  吴明远  廖海黎  葛耀君
作者单位:1. 同济大学 土木工程防灾国家重点实验室, 上海 200092; 2. 同济大学 桥梁结构抗风技术交通运输行业实验室, 上海 200092; 3. 西南交通大学 桥梁工程系, 四川 成都 610031; 4. 西南交通大学 风工程四川省重点实验室, 四川 成都 610031; 5. 深中通道管理中心, 广东 广州 510000; 6. 中交公路规划设计院有限公司, 北京 100088
基金项目:国家重点研发计划项目(2018YFC0809600,2018YFC0809604);国家自然科学基金项目(51678451,51678508)
摘    要:伶仃洋大桥(主跨1 666 m)为深中通道的主通航孔桥,位于典型的强台风气候区,易受台风主导的极端天气影响,桥面高度处的设计基准风速高达58.6 m·s-1,桥梁的抗风设计面临极大挑战。介绍该桥从初步设计阶段到施工图设计阶段的抗风性能研究过程,包含初步设计阶段采用节段模型风洞试验实施的多方案结构比选和施工图设计阶段通过全桥气弹模型和节段模型风洞试验优化主梁气动措施两方面内容。通过整个抗风设计流程,最终确定了结构体系、主梁形式及梁高、中央稳定板高度、栏杆透风率和检修轨道位置等综合抗风措施,在保证抗风安全的同时提高了工程经济性。对于本工程代表的超大跨度悬索桥,以多种气动和结构措施综合提升桥梁的抗风稳定性,突破了颤振设计的认识瓶颈,成功地沿用了整体式流线箱形加劲梁,回归到桥梁设计及建造兼顾经济和安全的发展本源,对于采用整体箱梁的大跨度悬索桥极限跨径的应用具有重要的示范意义。

关 键 词:桥梁工程  悬索桥  整体箱梁  极限跨径  风洞试验  气动措施  结构选型  
收稿时间:2019-01-09

Investigation of Wind-resistance Performance of Lingdingyang Bridge with Main-span 1 666 m in Shen-Zhong Link
ZHAO Lin,WANG Qi,SONG Shen-you,CHEN Wei-le,WU Ming-yuan,LIAO Hai-li,GE Yao-jun.Investigation of Wind-resistance Performance of Lingdingyang Bridge with Main-span 1 666 m in Shen-Zhong Link[J].China Journal of Highway and Transport,2019,32(10):57-66.
Authors:ZHAO Lin  WANG Qi  SONG Shen-you  CHEN Wei-le  WU Ming-yuan  LIAO Hai-li  GE Yao-jun
Abstract:The Lingdingyang Bridge is the main navigation bridge of the Shen-Zhong link, and its main span is 1 666 m. The super-long span and ultra-high bridge deck renders this bridge sensitive to wind effects, especially in a region that is known to be typhoon prone. The bridge site has a higher basic design wind speed and is susceptible to extreme weather conditions such as strong typhoons. This investigation focused on the wind resistance design of the bridge from the preliminary design stage to the detailed construction design stage. Specifically, a series of tasks were considered: in the initial design stage, sectional model wind tunnel tests were applied to select a more reasonable structure system from comparable design schemes; in the detailed construction design stage, full-bridge aero-elastic and sectional model wind tunnel tests were adopted to optimize beam height and requisite facilities. Through these wind-resistant design processes, the structural system, the form of the height of the main beam, the height of the central stabilizer plate, the ventilation rates of the hand-railings, and the inspection track positions were determined to address the core problem of wind-induced flutter instability. Economical design and wind-resistant safety can thus be successfully guaranteed for the integral streamlined box girder used in similar super-long-span bridges.
Keywords:bridge engineering  suspension bridge  streamlined box girder  limit span  wind tunnel test  aerodynamic countermeasure  aerodynamics optimization  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号