首页 | 官方网站   微博 | 高级检索  
     

大跨桥梁主梁风致稳定性被动气动控制措施综述
引用本文:赵林,李珂,王昌将,刘高,刘天成,宋神友,葛耀君.大跨桥梁主梁风致稳定性被动气动控制措施综述[J].中国公路学报,2019,32(10):34-48.
作者姓名:赵林  李珂  王昌将  刘高  刘天成  宋神友  葛耀君
作者单位:1. 同济大学 桥梁结构抗风技术交通行业重点实验室, 上海 200092; 2. 同济大学 土木工程防灾国家重点实验室, 上海 200092; 3. 重庆大学 山地城镇建设与新技术教育部重点实验室, 重庆 400045; 4. 重庆大学 土木工程学院, 重庆 400045; 5. 浙江省交通规划设计研究院, 浙江 杭州 310006; 6. 中交公路长大桥建设国家工程研究中心有限公司, 北京 100088; 7. 深中通道管理中心, 广东 广州 510000
基金项目:国家重点研发计划项目(2018YFC0809600,2018YFC0809604);国家自然科学基金项目(51678451,51808075);中国博士后科学基金项目(2017M620413);重庆市博士后基金特别资助项目(XmT2018034);中央高校基本科研业务费专项资金项目(2018CDXYTM0003)
摘    要:颤振和涡振是大跨桥梁风致振动控制的核心研究对象,而被动气动控制措施是当前最常用的抑振方法。为了提高气动选型和优化的效率,系统调研了既有的颤振、涡振被动气动控制措施,发现对于有类似气动特性的主梁,被动气动控制措施在颤振、涡振控制方面存在较明显的趋同性。在选择颤振、涡振气动控制措施时,有必要紧密结合主梁气动外型分类。为此,基于大跨度桥梁中最常见的4种主梁类型(双边主梁、整体式箱梁、分体式箱梁以及桁架梁),综述了被动气动控制措施在改善主梁颤振、涡振性能时的优化思路,提出了基于气动附属物(稳定板、格栅、风障、翼板、分流板、裙板、导流板、隔流板等)的形状和位置优化原则,推荐了考虑主梁固有外形(主梁开槽、槽内倒角、设计风嘴、调整栏杆和检修轨道形式)的附加构件尺寸设置策略。研究结果可为大跨度桥梁主梁选型设计阶段提供气动选型方面的参考和借鉴。

关 键 词:桥梁工程  大跨桥梁  综述  颤振  涡振  被动气动措施  气动选型  
收稿时间:2019-04-04

Review on Passive Aerodynamic Countermeasures on Main Girders Aiming at Wind-induced Stabilities of Long-span Bridges
ZHAO Lin,LI Ke,WANG Chang-jiang,LIU Gao,LIU Tian-cheng,SONG Shen-you,GE Yao-jun.Review on Passive Aerodynamic Countermeasures on Main Girders Aiming at Wind-induced Stabilities of Long-span Bridges[J].China Journal of Highway and Transport,2019,32(10):34-48.
Authors:ZHAO Lin  LI Ke  WANG Chang-jiang  LIU Gao  LIU Tian-cheng  SONG Shen-you  GE Yao-jun
Abstract:Flutter and vortex-induced vibrations (VIVs) are two core elements for the wind-induced vibration control oflong-span bridges. At present, the most commonly used vibration suppression method is passive aerodynamic control. In order to improve the efficiency of aerodynamic shape selection and optimization, the existing passive aerodynamic controls on flutter and VIVs were systematically investigated. If the aerodynamic characteristics of main girders are similar, there is anobvious consistency in the flutter and VIVs under passive aerodynamic control. Moreover, the aerodynamic shape of the main girder should be classified when choosing the aerodynamic control on the flutter and VIVs vibration. Here, the aerodynamic characteristics of four main girder types (bilateral, integral box, split box and truss) used in long-span bridges were considered. Some optimization ideas for the application of passive aerodynamic controls, to improve the flutter and VIVs performance of long-span bridge girders, have been summarized. The principle of shape-position optimization based on aerodynamic appendages (e.g., stabilizer plate, grille, wind barrier, winglet, separator, skirt plate, guide vane, flow-isolating plate, etc) is proposed, in combination with the dimensional setting method of additional components that considers the main girder's inherent shape (i.e., slotting, chamfering, design of the wind fairing, adjusting railings, and maintenance track, etc). Overall, this work provides important information for the aerodynamic selection of main girders during the preliminary design of long-span bridges.
Keywords:bridge engineering  long-span bridge  review  flutter  vortex-induced vibration  passive aerodynamic countermeasure  aerodynamic shape selection  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号