首页 | 官方网站   微博 | 高级检索  
     

SBS/橡胶粉复合改性SH型混合生物沥青工艺及机理
引用本文:董泽蛟,周涛,栾海,杨晨,王鹏,冷真.SBS/橡胶粉复合改性SH型混合生物沥青工艺及机理[J].中国公路学报,2019,32(4):215-225.
作者姓名:董泽蛟  周涛  栾海  杨晨  王鹏  冷真
作者单位:1. 哈尔滨工业大学 交通科学与工程学院, 黑龙江 哈尔滨 150090; 2. 吉林省交通规划设计院, 吉林 长春 130021; 3. 山东建筑大学 交通工程学院, 山东 济南 250101; 4. 香港理工大学 土木与环境工程系, 香港 999077
基金项目:国家自然科学基金项目(51478152,51478154);吉林省交通运输科技计划项目(2018-1-2)
摘    要:为探究复合改性技术提升混合生物沥青路用性能的工艺及机理,针对特定来源的SH型生物沥青,将其与石油沥青共混制备混合生物沥青后进行SBS/橡胶粉复合改性,研究改性顺序及改性剂掺量对复合改性沥青常规路用性能的影响、生物沥青掺量对改性剂溶胀特性与复合改性沥青高温及低温性能的影响,由此确定混合生物沥青复合改性工艺;利用多应力重复蠕变恢复(MSCR)、弯曲梁流变(BBR)和频率扫描(FS)试验评价复合改性沥青的流变特性;借助红外光谱(IR)化学官能团分析以及荧光显微镜(FM)和原子力显微镜(AFM)微观形貌观测分析揭示混合生物沥青复合改性机理。研究结果表明:SBS掺量为2.5%,橡胶粉掺量为18%(内掺)时,按照先SBS改性后橡胶粉改性的顺序制备的复合改性沥青的常规路用性能均较优;生物沥青掺量为15%时改性剂溶胀特性与复合改性沥青的高温及低温性能均较佳;SBS/橡胶粉复合改性在显著提升混合生物沥青弹性恢复率与m值的同时还降低了其不可恢复柔量与劲度模量,即改善了混合生物沥青的高温稳定性与低温抗裂性,且此结果与FS复数模量主曲线结果相一致;生物沥青可有效增溶聚合物改性剂并增强聚合物相网络结构,从而显著提升沥青复合改性效果;对混合生物沥青进行SBS/橡胶粉复合改性后未出现新的特征吸收峰,此复合改性过程属于物理变化;沥青厂生产的复合改性沥青性能优于实验室水平制备的复合改性沥青。

关 键 词:道路工程  改性机理  复合改性  生物沥青  改性工艺  性能评价  
收稿时间:2018-05-30

Composite Modification Technology and Mechanism of SH Blended Bio-asphalt by Combining SBS with Crumb Rubber
DONG Ze-jiao,ZHOU Tao,LUAN Hai,YANG Chen,WANG Peng,LENG Zhen.Composite Modification Technology and Mechanism of SH Blended Bio-asphalt by Combining SBS with Crumb Rubber[J].China Journal of Highway and Transport,2019,32(4):215-225.
Authors:DONG Ze-jiao  ZHOU Tao  LUAN Hai  YANG Chen  WANG Peng  LENG Zhen
Affiliation:1. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China; 2. Jilin Traffic Planning and Design Institute, Changchun 130021, Jilin, China; 3. School of Traffic Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China; 4. Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong 999077, China
Abstract:An investigation of composite modification technology and the mechanism of blended bio-asphalt was performed to improve pavement performance. SH bio-asphalt from a specific source was mixed with petroleum-based asphalt to prepare the blended bio-asphalt, which was then modified by combining styrene-butadiene-styrene (SBS) with crumb rubber (CR). The effects of the modification order and modifier contents on the conventional pavement performance of composite modified asphalt were studied as well as the effects of bio-asphalt content on the swelling properties of modifiers and the high/low-temperature performance of composite modified asphalt. From this, a composite modification technology for blended bio-asphalt was determined. Multiple Stress Creep Recovery (MSCR), Bending Beam Rheometer (BBR), and Frequency Sweep (FS) tests were also performed to evaluate the rheological characteristics of the composite modified asphalt. In addition, chemical functional groups analysis by Infrared Spectroscopy (IR) and micro-topographical characteristics analysis by Fluorescence Microscopy (FM) and Atomic Force Microscopy (AFM) was conducted to reveal the composite modification mechanism of blended bio-asphalt. The results show that the comprehensive pavement performance of the composite modified asphalt with SBS modification (2.5% wt.) before CR modification (18% wt.) is higher than that of the asphalt with SBS modification after CR modification. Both the high/low-temperature performance and modifier swelling properties of composite modified asphalt are excellent with a bio-asphalt content of 15%. Therefore, the composite modification by combining SBS with CR could significantly enhance the high-temperature stability and low-temperature cracking resistance of blended bio-asphalt by increasing the recovery (R) and m-value as well as decreasing the recoverable compliance (Jnr) and creep stiffness (S). These results also correlate with those of complex modulus master curves by FS test. In addition, the network structure of the polymer phase is strengthened owing to the effective solubilization of the polymer modifier by the bio-asphalt addition, thus improving the composite modification effect of the asphalt. Moreover, no new infrared absorption peaks occur in the composite modified asphalt, which implies that this composite modification is a physical process. Furthermore, the comprehensive performance of composite modified asphalt processed in an asphalt factory is better than that of asphalt prepared in a laboratory.
Keywords:road engineering  modification mechanism  composite modification  bio-asphalt  modification technology  performance evaluation  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号