首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 593 毫秒
1.
结构在水下爆炸作用下会产生严重的破坏,研究水下爆炸作用下结构的响应特征和规律,并为舰船抗冲击设计提供参考。首先验证了ABAQUS软件模拟结构受水下爆炸载荷作用弹塑性响应的有效性和准确性。然后应用ABAQUS软件计算不同工况水下爆炸载荷作用下结构的动态响应。从应变、应力等角度考察了水下爆炸载荷对结构动态响应的影响。计算结果表明气泡脉动压力是结构产生鞭状响应和整体破坏的主要因素。  相似文献   

2.
[目的]舰船在执行任务的过程中有可能因同时遭受波浪载荷与水下爆炸气泡脉动载荷的联合作用而使船体响应发生“叠加效应”,导致总强度的损失,因此需要探索水下爆炸气泡脉动与波浪联合作用时船体梁的动力响应规律。[方法]首先,采用理论分析的方法建立船体梁的简化模型,并对水下爆炸气泡脉动载荷与波浪载荷进行求解;然后,基于Hamilton原理,分别推导两端自由船体梁在波浪载荷与水下爆炸气泡脉动载荷单独作用及联合作用下的运动微分方程;最后,基于对运动微分方程的求解,分析船体梁的自由振动响应在与外载荷组合的3种工况下简化模型的运动响应。[结果]结果显示,在波浪载荷与水下爆炸气泡脉动载荷的联合作用下,船体梁的运动响应相比2种载荷单独作用时运动响应的线性叠加值增大了15%。[结论]所做研究可为舰船结构在联合载荷作用下运动响应分析的计算程序开发提供参考。  相似文献   

3.
通过数值方法模拟舰船受水下爆炸冲击波载荷及气泡脉动载荷作用下的整体响应。计算过程中,考虑波浪载荷的作用,给出水下爆炸载荷与波浪载荷联合作用下船体响应计算方法,并与传统舰船船体强度分析方法相结合,分别研究水下爆炸冲击波载荷、气泡脉动载荷以及波浪载荷的相互作用下,船体强度计算方法。研究结果表明,在水下爆炸冲击波阶段可以忽略波浪载荷的影响,而在气泡脉动阶段,必须考虑波浪载荷与气泡载荷的联合作用。本研究旨在为水下爆炸载荷作用下的舰船总强度研究提供参考。  相似文献   

4.
水下爆炸气泡脉动压力下舰船及其设备抗冲击性能研究   总被引:3,自引:0,他引:3  
将船体梁视为两端自由的Timoshenko梁,在借用二维切片法和水弹性方法的基础上,计算船体梁在水下爆炸二次脉动压力下的响应特性.同时,还建立了在考虑水面效应和气泡运动时舰船受到二次脉动压力的计算模型.最后,分析了浮筏式减振装置在水下爆炸二次脉动压力下船用设备的减振抗冲性能.  相似文献   

5.
陈学兵  李玉节 《船舶力学》2010,14(8):922-929
圆柱壳是潜艇的主要结构单元,其在水下爆炸作用下产生的动态塑性响应是潜艇破坏的主要因素之一,因此研究其水下爆炸动态塑性响应有助于深入了解圆柱壳结构的失效规律和机理.对于提高潜艇的生命力和战斗力以及改良水中兵器战斗部装药设计有着重要的意义.文章首先根据Geers-Hunter的水下爆炸气泡集成的双重渐近模型进行数值求解,得到的结果很好地模拟了水下爆炸载荷从冲击波到第一次气泡脉动的整个过程.然后利用ABAQUS软件,将圆柱壳简化成一根梁,并从圆柱壳在水下爆炸气泡作用下产生的塑性铰的个数这一角度,当气泡第一次脉动频率与圆柱壳梁模型的第一、二阶固有频率接近时,对圆柱壳在水下爆炸气泡作用下的动态塑性响应进行了探索性的研究.  相似文献   

6.
张弩  宗智 《船舶力学》2015,(5):582-591
文章基于势流理论,针对水下爆炸气泡脉动载荷作用下船体梁的动态水弹性鞭状响应及其共振效应进行了研究。阐述了水下爆炸气泡与船体梁之间的流固耦合理论分析,并分别建立了一个考虑气泡迁移,自由面效应和气泡阻力的气泡模型和一个船体梁的弹性响应的计算模型。文中以两条实船作为算例,研究了刚体运动对船体梁弹性振动响应的影响,分析了船体梁在气泡脉动载荷作用下产生的共振破坏的机理。  相似文献   

7.
水下爆炸气泡脉动作用下细长加筋圆柱壳的鞭状响应分析   总被引:6,自引:0,他引:6  
董海  刘建湖  吴有生 《船舶力学》2007,11(2):250-258
细长加筋圆柱壳是潜艇耐压壳体的主要结构,其在水下爆炸载荷之下发生的鞭状运动是潜艇结构破坏的主要因素之一.为了考察不同的因素对于细长加筋圆柱壳鞭状响应的影响,该文将圆柱壳简化为一根变截面的梁,用双重渐进近似法(DAA)描述了结构的动态变形与瞬态流场的耦合作用,从弯矩的角度的考察了水下爆炸第一次气泡脉动载荷对结构鞭状响应的贡献,总结了圆柱壳上的弯矩随潜深,爆距,爆炸方位角变化的规律.研究结果有助于进一步了解水下爆炸作用下潜艇的鞭状动响应特征,并用以改进潜艇的抗冲击设计.  相似文献   

8.
设计了船舱浮筏系统的水下爆炸试验装置,测试了浅水域中爆炸的水下爆炸载荷,分析了存在结构反射时的冲击波和气泡脉动压力的幅值、比冲量和能量密度,指出以低频成分为主的气泡脉动压力,对舰船设备隔离系统的冲击响应产生重要的作用.并对水下爆炸载荷作用下船舱浮筏系统的冲击响应进行分析,其结果对于研究舰船设备的抗冲击性能具有参考价值.  相似文献   

9.
赵海峰  操戈 《船电技术》2013,33(5):23-26
由于现实大药量水下爆炸实验的气泡运动性态,难以很好地利用高速摄影进行拍摄。本文通过自主设计的实验电路,模拟水下电爆炸的各种工况,证明了低电压充放电电路实现水下微型电爆炸的可能性,可以较好地得到水下爆炸后气泡脉动和射流的诸多特性,为揭示水下爆炸气泡运动特性提供了参考。  相似文献   

10.
圆柱壳附近水下爆炸气泡动态特性研究   总被引:1,自引:0,他引:1  
《舰船科学技术》2013,(8):18-23
基于不可压缩势流理论,运用边界元方法,建立圆柱壳附近水下爆炸气泡三维数值模型。然后采用该模型模拟深水中圆柱壳附近近场水下爆炸气泡运动,并对气泡动态特性以及攻角大小对其影响规律进行了研究。计算结果表明,膨胀阶段气泡受浮力作用以及壁面的排斥作用影响较小;收缩阶段气泡受浮力作用以及气泡受壁面的吸引作用影响较大,随攻角的减小,气泡射流作用和气泡脉动压力均逐渐增强,即爆点位于圆柱壳结构正下方时所造成的结构损伤最为严重。研究结论有益于潜艇结构抗爆防护设计,也为水下爆炸气泡载荷作用下潜艇结构毁伤机理研究提供了参考依据。  相似文献   

11.
为了获得连续水下爆炸声源,文章设计了金属导爆索网栅结构,并开展了水下爆炸压力测试和气泡脉动实验,研究了金属导爆索网栅结构水下爆炸的声压级特性,水下爆炸的声持续时间,对应的混响效应,利用Hilbert-Huang变换对水下爆炸信号的频谱特性进行了分析.研究结果表明:金属导爆索网栅结构水下爆炸可根据设计连续产生多个脉冲冲击波信号,形成近似平稳的连续波,随后产生的气泡脉动和混响效应能够明显提高水下爆炸声的持续时间;金属导爆索网栅结构具有很强的声功率,水下爆炸声压级最高能够达到249 dB,爆炸60 ms后金属导爆索的爆炸声压级仍在200 dB以上;金属导爆索网栅结构水下爆炸声频率范围广,在100 kHz以下低频段能量最高.金属导爆索网栅结构水下爆炸脉冲信号频率成分丰富,具有低频和瞬时的特点,且大部分集中在100 kHz以下,尤以50 kHz以下的最为明显;脉冲信号具有多个能量峰值,能量值较集中,波动能量基本上都集中在频率为100 kHz范围以内,尤以50 kHz以下的低频能量最大,高于100 kHz以上频段的能量的分量很小.脉冲冲击波的个数和声持续时间可由金属导爆索网栅的排列方式和长度控制,脉冲冲击波间的时间间隔可调,发生装置稳定易控.  相似文献   

12.
运用有限元程序MSC.Dytran模拟水下爆炸气泡脉动现象的整个过程,计算输出气泡中心位置压力时历曲线与爆炸理论吻合;采用层合板模型模拟连续玄武岩纤维复合材料,选取一般耦合算法计算流体与结构的耦合效应,计算连续玄武岩纤维复合材料舱段在脉动载荷作用下的动力响应;分析连续玄武岩纤维复合材料船体结构位移时历曲线、应力时历曲线及船底板应力云图.研究结果表明,在近场爆炸情况下,第一次脉动产生的应力波有可能比爆炸冲击波对船体造成更大的破坏;爆炸产生的脉动载荷频率接近整船或局部构件固有频率时,引发共振,对船体造成爆炸冲击破坏外的附加损害.  相似文献   

13.
运用有限元程序MSC.Dytran对无限水域近场非接触爆炸冲击波和气泡脉动载荷下加筋板的毁伤进行研究,分析两种冲击载荷的不同作用方式、作用位置和毁伤效果。在此基础上分析加筋板结构和气泡脉动的相互影响,距离参数的改变对气泡中心移动方向、射流方向和射流强度的影响。并对Blake准则在弹性结构边界下的使用范围进行探讨。  相似文献   

14.
基于Geers与Hunter提出的自由场气泡脉动载荷计算方法,利用开尔文冲量法分析气泡自由场假设成立的条件,并将简单结构的计算结果同试验值进行对比,验证了所用算法的有效性。通过对简化的单壳体潜艇结构在不同气泡工况下响应的求解分析,得出如下结论:当气泡与边界距离大于其半径的3倍时,可忽略结构对气泡运动的影响;声固耦合法可有效求解结构在气泡脉动下的响应;在低频气泡脉动载荷激励下,结构的一阶及三阶垂向运动被激起,且以一阶运动为主;结构一阶垂向湿频率与气泡脉动的频率相差一定时,结构频率与其鞭状运动幅度呈负相关趋势;当气泡脉动频率与结构湿频率接近时,结构的响应出现峰值。  相似文献   

15.
水下爆炸二次脉动压力下舰船抗爆性能研究   总被引:27,自引:2,他引:25  
将船体梁视为两端自由的Timoshenko梁,在借用二维切片法和水弹性方法的基础上,计算船体染在水下爆炸二次脉动压力下的响应特性。同时,还建立了在考虑水面效应和气泡运动时舰船受到二次脉动压力的计算模型。最后,分析了浮筏式减振装置在水下爆炸二次脉动压力下船用设备的减振抗冲性能。  相似文献   

16.
Bubble load in a noncontact underwater explosion can cause the ship hull global response and local response. In current literature, the ship hull is usually simplified as a hull girder to analyze its global response. However, literature dealt with the local response of a 3-D surface ship hull subjected to an underwater bubble were limited. This investigation develops a procedure which couples the finite element method with doubly asymptotic approximation (DAA) method to study the problem of transient responses of a ship hull structure subjected to an underwater explosion bubble. Using a 3-D ship model as examples, the global and local responses of the ship model in vertical, transverse and longitudinal directions are performed in detail. The acceleration, velocity and displacement time histories are presented. The characteristics of both the global and local responses of the ship model are discussed. The numerical results show that besides global whipping response, the ship hull also sustains severe local responses in different directions subjected to underwater explosion bubble jetting, which should be taken into consideration.  相似文献   

17.
基于相似原则设计了全封闭对称结构船体梁模型,将TNT炸药置于模型中部正下方爆炸,通过改变爆距和药量来研究梁模型在水下近距非接触爆炸作用下的整体损伤特性,比较爆炸气泡运动对梁结构造成的中垂和中拱弯曲损伤作用,探索近距条件下炸药爆炸造成梁发生整体损伤变形时的高效攻击方式。研究发现:在近距非接触爆炸作用下,当爆炸气泡脉动频率与梁一阶湿频率相近时,水下爆炸气泡对梁结构造成的损伤作用以中垂弯曲为主,且爆径比越小,中垂损伤作用越明显;若爆径比不变,随着药量的增大,梁的整体损伤模式会由中垂弯曲向中拱弯曲转变;一定爆距范围内,炸药在远距离多次爆炸比近距离一次爆炸所造成的梁结构中垂损伤变形要大。  相似文献   

18.
To understand the intrinsic strong interaction between the soft coating and near-field underwater explosion, a series of comparative live fire tests are implemented. Nine steel circular plates with three configurations (i.e. rubber coated plate, foam coated plate and bare plate) are tested using 1.5 g PETN detonator. The stand-off between the plate center and explosive charge is ranged from 3.41 to 1.14 times of the maximum bubble radius. The transient strain history of the plate and acceleration history of the metal base fixture are monitored. The whole explosion process including local cavitation and bubble motion is recorded by an APX-RS high speed camera. Test results show that the compressibility of coating layer is the dominative factor that controls its protective performance in the shock wave loading phase. The more compressible foam coating distinctly reduce the shock wave intensity by local cavitation before enters the densification phase, while the explosion bubble shape and even the direction of water jet can also be changed. But the attenuation performance in the bubble loading phase is not as optimistic as that in the shock wave phase because more deformation space is required while the core has often entered the densification phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号