首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
空间缆索自锚式悬索桥的主缆直接锚固在加劲梁上,同时由于主缆的空间特性,与地锚式悬索桥及传统平面索相比,其动力性能存在很大的差异.针对青岛海湾大桥大沽河航道桥建立非线性空间有限元模型,对其动力特性及结构刚度影响规律进行了分析.结果表明,该桥振型基本合理,具有密布的频谱;作为自锚式悬索桥其整体刚度较低,固有周期较长;单柱式桥塔的横向刚度较弱,横向振动出现较早;另外,由于缆索横向间距较小,刚度较小,前10阶振型中有5阶索振.各振型受结构刚度的影响不同,主缆刚度主要影响悬索桥的1阶竖弯及扭转,加劲梁竖向刚度对加劲梁1阶竖弯及加劲梁扭转振型影响较大,横向刚度主要影响悬索桥的加劲梁横向振型,扭转刚度主要影响悬索桥的1阶扭转振型;主塔纵向刚度主要影响悬索桥的纵飘振型;横向刚度主要影响索塔的1阶横向振型.  相似文献   

2.
陈策  钟建驰 《公路》2012,(6):1-4
以泰州大桥为例,用有限元法分析了三塔悬索桥中塔弹性纵向约束的合理弹性刚度,研究了弹性纵向约束对主塔、加劲梁、主缆以及结构动力特性的影响,研究结果表明,设置弹性索能有效改善三塔悬索桥的受力性能。  相似文献   

3.
以国内某混凝土加劲梁自锚悬索桥为研究背景,在总结前人研究成果的基础上,采用Midas Civil程序建立"脊骨梁"式有限元模型,研究结构自重与加劲梁横弯、竖弯与扭转刚度对混凝土加劲主梁自锚悬索桥动力特性的影响。结果表明结构自重变化对混凝土加劲主梁自锚悬索桥的动力特性影响较大,主梁竖弯刚度与扭转刚度对竖弯振动频率与扭转振动频率的影响较大,但横弯刚度对横弯振动频率影响不明显。  相似文献   

4.
为评价预应力混凝土桁架连续刚构桥的动力性能,以湖北省归州大桥动力试验为背景,测试了结构的频率、振型、阻尼比和不同行车速度、不同路况下结构的冲击系数。建立了基于不同假定的3种空间有限元计算模型,计算了结构的振动频率和振型,与实桥动力试验结果进行了对比分析;研究了结构刚度、横向联系、桥墩高度、边界约束条件等参数对结构动力特性的影响。结果表明,横铺桥面板对提高结构横向刚度和扭转刚度有较大的贡献;结构的横向刚度和纵向刚度相对竖向刚度和扭转刚度较小;结构振动衰减正常,桥面平整度较好,具有良好的行车性能;结构整体刚度、桥墩高度及边界约束条件是影响结构横向和纵向振动的主要因素;横向联系是影响结构的局部扭转振动的主要因素。  相似文献   

5.
《中外公路》2021,41(2):129-134
为探讨不同中央扣联结形式对空间缆索悬索桥静、动力特性的影响,以宝塔坪特大桥为研究背景,建立了该桥3种不同联结模式下的三维空间静、动力计算模型,针对3种不同中央扣联结形式下结构静、动力响应做了对比分析。研究结果表明:静力方面,中央扣对活载下加劲梁的竖向挠度影响较小,但会减小梁端纵向位移,并将增大跨中加劲梁轴力;动力方面,中央扣的设置提高了结构的反对称扭转频率,推迟了纵漂振型的出现,增大了结构的抗扭转刚度和纵向刚度。  相似文献   

6.
结构参数变化对斜靠式拱桥动力特性的影响   总被引:3,自引:0,他引:3  
以广东省潮州市韩江北桥主跨钢管混凝土斜靠式拱桥初步设计方案为对象,采用ANSYS有限元程序,并考虑边跨对主跨的弹性约束作用,建立了该中承式钢管混凝土斜靠式拱桥动力计算的整体空间有限元计算模型;探讨了14种不同工况条件对桥梁动力特性的影响.计算结果表明:该钢管混凝土斜靠式拱桥为柔性结构,桥梁的竖向刚度相对较强,而钢管混凝土拱肋的面外刚度相对较弱;Ⅴ撑外端约束及系杆梁抗弯刚度的变化对该桥动力特性影响较小;稳定拱拱脚横向外移以及增加吊杆虽能增大该桥拱肋的横向面外刚度,但对全桥竖向及扭转刚度贡献不大;桥梁施工状态对该桥振型影响较大.  相似文献   

7.
动力特性是影响桥梁结构安全的重要因素。为研究大跨度提篮拱桥的动力特性,以菜园坝长江大桥为工程背景,基于Midas civil 2012建立了主桥有限元模型,利用子空间迭代法计算了主桥的动力特性;通过脉动试验进一步对有限元模型进行了确认。在确认后的有限元模型基础上,研究了包括矢跨比、内倾角、拱肋刚度等主拱结构参数对动力特性的影响。结果表明:桥梁模态呈低频、密集分布特点,模态耦合程度高;矢跨比对结构竖向振动频率影响较大;拱肋内倾角对横向振动频率影响明显;拱肋刚度的提高会导致竖向横向振动频率的小幅增加。研究结果可为同类型桥梁动力设计和安全评估提供参考。  相似文献   

8.
桥梁动力荷载响应与自身动力特性密切相关,非常规斜拉桥的特殊动力特性是决定结构响应的内在原因,进行了三塔斜拉桥结构动力特性影响参数分析。计算结果表明:中等跨度三塔斜拉桥1整体扭转刚度大,扭弯频率比高,有利于提高结构的抗风能力;2该斜拉桥的振型及其频率对加劲梁弹性模量不敏感;3增大斜拉索截面不利于提高三塔斜拉桥结构的整体抗扭刚度;4横向抗风支座对索塔振型影响不大,解除横向抗风支座会大幅降低低阶振型频率,致使桥梁侧弯振型频率较低;5边跨辅助墩可以大大提高结构体系的整体刚度。  相似文献   

9.
基于挠度理论,分析了矢跨比、边中跨比、加劲梁竖向抗弯刚度、加劲梁纵坡和整体升降温对两塔三跨自锚式悬索桥结构受力特性的影响。此外,还讨论了加劲梁在轴向压力作用下的稳定性及其极限跨径。分析结果表明:矢跨比越小,主缆拉力越大、加劲梁的轴向压力也越大,而结构的整体刚度越低;边中跨比越大,结构的整体刚度越低,加劲梁在轴向压力作用下的横向稳定性也越差;主缆抗拉刚度或者加劲梁的竖向抗弯刚度越大,结构的整体刚度越大;加劲梁纵坡和整体升降温对结构受力的影响通常较小,可以忽略不计;自锚式悬索桥的极限跨径由加劲梁的横向第一类失稳及其屈服强度共同控制。  相似文献   

10.
波纹钢腹板混凝土箱梁动力特性研究   总被引:5,自引:1,他引:5  
采用sap2000建立了波纹钢腹板混凝土箱梁的空间有限元模型,并通过与波纹钢腹板混凝土试验箱梁实测值的对比验证了有限元模型的适用性,进而分析了波纹钢腹板结构参数对梁动力特性的影响规律。分析结果表明,波纹钢腹板厚的增大能在一定程度上提高箱梁的振动频率,尤其是扭转振动频率;波纹钢腹板折叠角变大时,其对竖向振动频率和横向振动频率影响较小,但能较大地提高扭转振动频率;波纹钢腹板水平面板宽度的变化使波纹钢腹板箱梁的竖向振动频率、扭转振动频率、横向振动频率都是先增加后减小,因此存在最优板宽范围,但不宜过大。  相似文献   

11.
为研究加劲索布置和刚度对三塔铁路斜拉桥动力特性的影响,以蒙华铁路洞庭湖大桥为工程背景,采用有限元软件ANSYS建立模型,分析设置主塔交叉索,塔、梁加劲索和塔顶水平加劲索对大跨三塔铁路斜拉桥动力特性的影响,并对加劲索不同布置形式下其刚度变化对动力特性的影响进行参数化研究。结果表明:加劲索对侧弯频率几乎没有影响;设置主塔交叉索对扭转频率有一定的提升,而设置塔、梁加劲索和设置塔顶水平加劲索对此几乎没有影响;加劲索能够大幅提高三塔斜拉桥的竖弯频率,且在相同刚度条件下,设置主塔交叉索对三塔斜拉桥竖弯和纵飘频率的提升最大,设置塔顶水平加劲索次之,设置塔、梁加劲索最小。  相似文献   

12.
自锚式悬索桥结构体系的关键技术   总被引:1,自引:1,他引:1  
胡建华  刘榕 《桥梁建设》2006,(5):32-35,43
通过世界上首座独塔单跨混合梁自锚式悬索桥—佛山平胜大桥的方案构思及结构设计,介绍了其采用的整体桥塔分离式加劲梁桥型结构、混合加劲梁、钢-混凝土结合段构造型式、钢箱梁顶推技术、吊索调索技术等原创性工程技术成果,综述了自锚式悬索桥设计的关键和创新技术。  相似文献   

13.
一种自锚式悬索桥主缆线形的解析法   总被引:3,自引:5,他引:3  
在传统的地锚式悬索桥主缆线形方程的基础上,引入了自锚式悬索桥主缆、加劲梁和索塔的变形协调方程,得到一种自锚式悬索桥主缆线形的解析方法:该方法可以在不进行有限元分析的情况下,仅给出自锚式悬索桥的跨度、矢跨比以及主缆、加劲梁和索塔的截面属性,通过求解主缆线形方程和变形协调方程所组成的方程组,就能够求出主缆的初始线形和成桥线形、主缆的无应力长度、索鞍偏移量。该方法简单、准确、高效,已经成功地应用在金华康济桥的施工监控中,建成后主缆的成桥线形与设计线形非常接近,最大误差只有27mm,由于该方法能方便而快速地计算出索鞍的偏移量和主缆线形,对优化自锚式悬索桥边跨与主跨的比例提供了一种高效的算法。  相似文献   

14.
以一主跨278 m,桥面宽4 m的钢桁架加劲梁窄桥面悬索桥--新疆赛吾迭格尔大桥为工程背景,对窄桥面悬索桥的风致抖振响应进行有限元仿真模拟分析,并对可能影响抖振分析结果的非线性因素进行了分析.分析结果表明:对于该类型悬索桥,结构的大变形效应对抖振响应影响为负,计算动力响应可以偏保守不考虑结构的大变形,各因素对主梁各方向抖振响应的影响各不相同,抖振对横向位移的影响比较大,应该重点考虑.  相似文献   

15.
中央扣对大跨悬索桥动力特性和汽车车列激励响应的影响   总被引:1,自引:0,他引:1  
为了探讨大跨悬索桥在动力激励下中央扣的作用,以四渡河悬索桥为研究背景,建立了该大跨钢桁架加劲梁悬索桥的3种中央扣模式的空间动力计算模型,对其动力特性和在移动汽车车列激励下的时程反应进行了空间非线性分析。研究结果表明:中央扣提高了结构的反对称抗扭刚度,限制了结构的纵飘特性;在静车列作用下,中央扣对全桥内力分布影响很小,但是在移动车列激励下,中央扣使得加劲梁的应力动响应显著增加,且随车列速度增加而增大;中央扣对加劲梁纵桥向位移的限制作用在常规速度车列激励下表现不明显;中央扣的设置方式宜采用刚性中央扣或3对柔性中央扣。  相似文献   

16.
六沾铁路宣天特大桥主桥为钢管混凝土拱加劲三跨连续梁桥,主跨为100 m。主梁为双纵梁的"П"形双向(局部三向)预应力混凝土结构,钢管混凝土加劲拱圈由2条相互平行的拱肋及横向联结系构成,拱肋为变高度钢管混凝土桁架,拱圈平联采用"ж"形空心钢管桁架,吊杆采用钢绞线体系。计算主梁应力、挠度、自振特性及钢管混凝土的钢管及混凝土应力;经试算,吊杆预张力、安全系数均满足要求。根据有限元分析结果,对拱-梁结合部进行设计改进:主梁上翼缘增加4束纵向短束;加强纵梁上翼缘普通钢筋布置;优化竖、横向预应力根数和布置。采取先梁后拱满堂膺架的施工方案。  相似文献   

17.
贵城大桥为2x40m+48m+180m+48m+40m+35m=431m双塔单索面自锚式悬索桥。设计过程中,考虑桥梁美观,采用单根主缆布置方式,吊杆布置在桥面中间,使桥面以上行人的视野更为通透;桥塔采用非常规A字型桥塔,加劲梁采用钢混结合主梁,从而使环境与结构达到完美结合。  相似文献   

18.
冯传宝 《桥梁建设》2020,50(1):99-104
五峰山长江大桥主桥为主跨1092 m的钢桁梁公铁两用悬索桥,加劲梁采用板桁结合钢桁梁,主缆采用预制平行高强钢丝索股结构,直径1.3 m。边跨加劲梁采用支架顶推法施工,中跨加劲梁采用缆载吊机由跨中向两侧对称架设,并在中跨侧靠近桥塔位置处合龙;主缆采用平行钢丝索股法架设。主缆制造时,采用无应力长度法计算各索股的无应力下料长度,并在主缆锚固区每处预留长度为±26 cm的垫板空间;主缆架设时,采用4根索股作为基准索股进行架设线形控制,并将主缆长度误差控制在-18~30 cm,均在误差控制范围内;加劲梁施工时,通过分析各因素对加劲梁线形的影响规律,提出控制二期恒载的措施;加劲梁合龙时,采取中跨钢梁不动、起顶边跨钢梁的合龙控制措施;在加劲梁合龙后加载二期恒载。加劲梁合龙后标高误差为-5^+63 mm,线形控制较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号