首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
基于CFD方法,求解轴对称航行体亚音速入水过程流场的非定常RANS方程,探讨航行体入水速度、入水角和攻角等参数对入水过程流体动力、运动姿态及空泡形态的影响。研究表明:(1)入水速度对入水冲击载荷有显著影响,而且影响入水空泡的长度;(2)入水角主要影响入水冲击阶段的流体动力,对于不同的入水角,在相同的入水距离时,航行体空泡形态除自由面附近外基本保持一致;(3)入水攻角会加剧航行体的姿态变化,严重影响空泡形态;(4)自由面附近的空泡形态受气体流动及压力变化的影响,但入水2倍弹长距离之后的空泡形态受自由面影响较小,可应用理论公式快速计算空泡形态。论文研究成果可为高亚音速入水降载研究提供参考。  相似文献   

2.
垂直入水空泡内部压强分布数值研究   总被引:1,自引:0,他引:1  
基于RANS方程,在VOF多相流模型中嵌入水蒸汽和水之间的质量输运模型成功实现了垂直入水空泡流的数值计算。通过与试验结果的对比说明了以上数值方法的可信性,并在此基础之上对带不同锥角头型圆柱体以不同速度垂直撞击自由液面后所生成的空泡内部压强分布进行了深入分析,结果表明:在入水空泡形成阶段,空泡内部压强会出现较大的降低现象,并随着空泡的发展压强值逐渐趋于稳定;空泡形成阶段空泡内部压强随入水物体头部锥角增加而增加;在开空泡阶段空泡内部压强低于环境压强,并随着入水速度增加而呈降低变化趋势,空泡内部压强轴向和径向分布较为稳定,没有较大的压强梯度;在空泡趋于闭合阶段空泡内部压强出现较大的波动,其变化规律与空泡内部空气复杂速度场变化规律相吻合。  相似文献   

3.
陷落腔结构作为船舶表面的一种常见结构,其产生的噪声近年来广受关注。文章在马赫数为0.0048条件下,采用LES-Lghthill等效声源法对刚性壁面三维陷落腔的流场及声场进行仿真,形象地再现了陷落腔内部涡旋运动变化规律,分析了陷落腔涡流流动机制、脉动压力特性以及辐射噪声特征。通过对脉动压力功率谱及声功率频谱的对比分析发现,声功率谱的前三阶频率与陷落腔流体动力振荡频率吻合,这表明刚性壁面的三维陷落腔涡流噪声由流体动力振荡引起,由脉动压力构成的偶极子源对涡流噪声的贡献最大。研究成果为控制船舶涡流噪声提供了理论依据。  相似文献   

4.
《舰船科学技术》2016,(3):54-58
入水问题是一个极为复杂的流固耦合问题,一般的数值手段很难进行完整的模拟,而实验手段则能够完整、准确地观测到结构入水的一系列复杂现象。本研究以实际导弹尾部出现的空腔结构为研究背景,以高速摄影技术为手段,设计多组实验,探究空腔结构参数对于入水砰击过程的影响。通过不同模型实验的对比,得到入水过程中空腔直径和空腔深度对于抨击射流的形成、冲击位置、腔内气体排出规律及自由液面飞溅等现象的影响规律。  相似文献   

5.
入水问题是一个极为复杂的流固耦合问题,一般的数值手段很难进行完整的模拟,而实验手段则能够完整、准确地观测到结构入水的一系列复杂现象.本研究以实际导弹尾部出现的空腔结构为研究背景,以高速摄影技术为手段,设计多组实验,探究空腔结构参数对于入水砰击过程的影响.通过不同模型实验的对比,得到入水过程中空腔直径和空腔深度对于抨击射流的形成、冲击位置、腔内气体排出规律及自由液面飞溅等现象的影响规律.  相似文献   

6.
王志  李鹏  许统华  徐良浩  张国平  陈伟政 《船舶力学》2016,20(11):1355-1360
采用人工通气的办法在水下航行体表面生成通气超空泡可以大幅降低水下航行阻力。保持通气空泡的形态稳定是保证航行体水下流体动力稳定的前提,因此需要了解通气空泡内部气体流动结构及其与空泡泄气方式的相互影响规律。该文建立了通气空泡内部流场结构的实验测量装置,并运用PIV(粒子成像测速)方法对通气超空泡内流场结构进行了测量,归纳了通气空泡三种典型的内部流场结构形式及其成因,并给出了泡内气流流速的变化趋势。  相似文献   

7.
针对目前水动力声学领域的孔腔流噪声研究大都基于单孔全开口模型的局限性,本文基于大涡模拟-声类比混合方法对局部开孔深腔体模型的孔腔流噪声发声机理进行研究。首先,对流场涡量、压强变化进行分析,得到涡结构的不断运动迁移和腔体孔壁后缘的碰撞发声构成的涡-声反馈是不同测点之间所测压强周期一致、相位不同的原因;其次,对不同测点的压强功率谱、空腔内声学模态频率进行分析,得到孔后壁上缘区域的压力脉动是局部开孔深腔体自持振荡发声的主要声源;最后,将所测声场特征线谱频率与经验公式的预测结果进行对比,验证了仿真结果的准确性。  相似文献   

8.
为了揭示超空泡航行体运动过程尾部振荡机理,文章采用试验的方法对超空泡航行体自由航行过程进行了研究。试验在水池中开展,采用高速摄影观察自由航行过程超空泡形态演化规律,采用压力传感器测量航行体表面压力,采用内测装置测量了航行体运动参数,获得了超空泡航行体运动过程空泡形态、压力和运动参数变化规律。试验结果表明,在航行体运动过程中,会出现尾部上下周期撞击空泡壁振荡现象,即为尾拍效应,表现为航行体撞击空泡壁瞬间,会形成非定常气液混合区域,相反侧则出现空泡透明区域。同时,稳定空泡内压力并非一定值,泡内压力和泡内空化数均在一定范围内波动,在尾部撞击空泡壁一侧,压力不断增大,出现压力高峰,相反侧则与稳定空泡内压力基本一致。  相似文献   

9.
结构冲击入水作为一种典型的流固耦合问题广泛存在于船舶与海洋工程领域,特别是作为海洋平台简化模型的平底结构有着重要的工程应用背景和学术研究价值。本文采用ALE算法对二维弹性平底结构等速冲击入水过程进行数值模拟和分析,分别采用Lagrange单元和Euler单元来表征结构和流体,并通过耦合算法实现对流固耦合过程的模拟,分别讨论不同质量、刚度及入水速度情况下空气垫现象对结构底部压力的影响。计算结果表明,平底结构入水冲击过程中,底部边缘处压力最先达到峰值,随后沿宽度方向向中心依次出现压力峰值,且结构等速冲击入水后的运动为自由振动。冲击压力的峰值随结构质量及刚度的增大而增大,同时冲击压力峰值与速度呈线性关系,随速度的增大而增大,底部斜升角对冲击压力峰值的影响十分显著。通过上述研究为工程应用中的结构强度设计提供重要依据。  相似文献   

10.
杨元龙 《船舶工程》2015,37(S1):109-112
基于两流体模型和热相变模型,结合考虑附加惯性力的摇摆计算模型,并引入指数压降放汽边界条件,利用CFX软件进行了摇摆条件下船用蒸汽蓄热器放汽过程数值计算。计算结果显示,在摇摆条件下,蒸汽蓄热器放汽压力和温度均快速降低,但摇摆运动对放汽压力和温度参数影响比较小;摇摆运动加强蒸汽蓄热器内汽水两相流体的湍流交混,诱发蓄热器压力场、速度场和温度场分布紊乱;周期性的摇摆运动导致蒸汽蓄热器水位产生剧烈的周期性波动,且波动周期与摇摆周期基本一致。摇摆模型在蒸汽蓄热器两相流数值模拟中的成功应用,可为海洋条件下蒸汽蓄热器热工水力的准确分析提供参考。  相似文献   

11.
对尖劈结构的吸声性能进行了实验测试,进而研究了含空腔尖劈吸声结构的吸声性能。根据变截面波导理论建立的吸声系数方程,计算了尖劈结构的吸声系数,讨论了尖劈结构吸声性能随频率、静水压力及空腔结构的变化规律,并将计算值与实验值进行了对比。研究结果表明:随着静水压力的增大,尖劈结构吸声系数曲线的形状基本不变,但其数值有所下降;同种材料不同空腔类型尖劈结构的吸声性能差别较大,在低频段尤为明显,而对于同种腔型尖劈结构,其吸声性能则主要由空腔尺寸决定;对于含空腔尖劈吸声结构,增大空腔尺寸可以使尖劈空腔共振加强而提高其低频吸声效果,但空腔尺寸过大反而会影响尖劈结构的整体吸声效果,这对水下尖劈吸声结构的设计及其在实艇减振降噪中的应用具有一定的参考意义。  相似文献   

12.
本文采用VOF和动网格方法、考虑限制水域边界条件的约束因素,利用CFD商业软件FLUENT通过求解脉冲砰击压力作用下具有自由表面限制水域上的Navier-Stokes方程来分析与观察一定倾角的矩形结构从一定高度自由落下砰击限制水域的水面所引起的三维流体动力现象,并与无倾角的矩形结构撞击有限水深水域的水面所引起的三维水面波动和水下压力场变化问题做对比分析。数值模拟结果表明采用本文所提出的数值方法可以对大型结构作用于封闭或开放水域的水面所激发起的水面波动和水下压力场变化进行有效的数值模拟。这一数值方法为工程上分析大型结构砰击限制水域水面所产生的水动力现象提供了一种实用的手段。  相似文献   

13.
当船舶航行于恶劣海况时,船舶会发生砰击现象。砰击现象是指船体发生剧烈的摇荡运动导致出水并再次入水,由于船舶入水砰击是瞬态过程,所以会在短时间内产生巨大的砰击压力,造成船体的变形甚至失效,因此准确预报入水砰击压力对保证船舶安全航行和作业具有重要意义。本文建立三维楔形体模型来模拟船首部位,结合有限体积法与动网格技术,引入VOF模型,数值模拟了波浪作用下不同刚度三维楔形体垂直入水的过程。研究发现不同刚度的三维楔形体分别入水的过程中,弹性结构入水砰击压力的峰值要小于刚性结构,弹性效应会一定程度减缓砰击的发生,为今后工程实践提供有价值的参考。  相似文献   

14.
基于均相流输运模型对NACA661-012型水翼进行了空化数值模拟,计算了不同空化数K和不同攻角α下的升力系数与阻力系数.从流场、压力场和边界层的变化分析了空化的产生发展对水翼升力和阻力的影响.当攻角α大于8°以后,空化流动的不稳定性增强,空泡呈现出周期性的生长溃灭,并伴有升力系数和阻力系数的周期性波动.计算结果与实验进行了对比,结果吻合较好.  相似文献   

15.
针对极地船舶在冰区航行时的冰水混合环境对螺旋桨性能影响,本文采用RANS方法对不同冰块阻塞和压力状态的螺旋桨非定常空泡和水动力性能进行数值模拟,分析了冰块阻塞状态对螺旋桨空泡激振力的影响规律。结果表明,冰块阻塞状态的螺旋桨水动力性能由冰桨逼近的流场阻塞和桨叶空泡效应共同决定,冰阻塞物下游产生的低速低压回流区可改变螺旋桨附近流场结构和压力场分布,加剧桨叶空泡形态的不规则和螺旋桨空泡激振力的时域非定常性。从频域上看,冰桨阻塞作用造成螺旋桨空泡激振力的高阶量显著上升,空泡激振频率向高阶次移动。  相似文献   

16.
基于流体-结构耦合振动的液压脉动滤波器试验研究   总被引:1,自引:0,他引:1  
分析了船上泵源液压系统压力脉动产生的原因及频率成分。根据气体消声器的原理,结合液压系统高压、大流量等工作特点,设计和制造了一种基于流体-结构(fluid-structure)耦合振动的结构共振式液压脉动滤波器,并推导出其波动衰减的传递矩阵模型。通过调整液压泵转速来改变压力脉动频率,在液压系统压力脉动试验平台上进行了三组对比试验。试验表明,当滤波器的结构振动体固有共振频率与系统频率接近时,系统的脉动能量得到有效衰减,系统的压力波动幅度和脉动率大幅降低。试验结果验证了结构共振式液压脉动滤波器的使用效能和存在的不足,它为液压系统振动控制提供了新的技术手段。  相似文献   

17.
为了探究曲率复杂的任意边界船艏入水过程中细节流场结构的动态演变与砰击过程中流动分离、卷气等复杂现象的发生机理,本文应用高频响的时间解析PIV(TR-PIV)技术对船艏模型以不同初速度入水过程中的流场进行动态捕捉,详细分析了其运动响应与流场结构.测试结果表明:较低入水初速度时,初次砰击到二次砰击有缓慢过渡过程,船艏内凹壁面会引导射流形成低速回流,而船艏外飘部分压迫水体产生流动鞍点,并由于无滑移壁面作用,会在内凹壁面处形成强剪切层;较高入水初速度时,会发生剧烈的二次砰击作用,主要是由于高速的射流发生流动分离,直接脱离船艏底端,与外飘部分相互作用,形成闭合气腔,并在气腔顶端形成流动鞍点,同时椭圆形气腔受压缩逐渐向圆形发展.  相似文献   

18.
陈瑛  鲁传敬  郭建红 《船舶力学》2010,14(12):1319-1330
基于相分数输运方程型的均质平衡流空化模型,采用有限体积法研制了大型空泡流计算程序,对大攻角下运行的水下航行体三维空泡流进行了数值模拟,并与实验结果进行了对比.首次将非线性涡粘湍流模式与基于Rayleigh-Pies-set方程的TEM型空化模型相结合,建立了自然空泡流的数学模型.采用基于SIMPLE的压力-速度-密度耦合修正算法、二阶精度三时间层格式以及基于延迟修正的高阶对流TVD格式.计算模拟了0.2~0.6空化数、4°~20°攻角的不同工况,得到的三维空泡形状及压力分布与实验结果相符.研究了大攻角下航行体周向上的空泡形态分布特征,给出了多种空泡尺度和升阻系数与空化数和攻角之间的关系.通过定量分析发现,空泡的不对称性导致航行体某些部位受力集中,表明高速带空泡运动的航行体在大攻角运动中其结构将受到巨大的水动力载荷.计算还发现,大攻角下的阻力系数与空化数之间的关系和零攻角条件下刚好相反,并根据空泡的不对称性从形状阻力与粘性阻力的关系上对这种现象作出了解释.  相似文献   

19.
孔腔流动中包含着流动分离和失稳以及涡旋相互干扰等复杂的流动现象。孔腔涡旋流动引起的流体振荡能够引起脉动压力的显著增加从而产生强烈的噪声,在工程实际中备受关注。湍流脉动压力是流激噪声的重要来源,也是湍流研究中的基础性问题,对其进行数值计算研究是流声耦合领域的重要内容,而湍流脉动压力波数—频率谱的构建更是该领域的技术难点。文章采用大涡模拟方法(LES)对孔腔脉动压力进行了数值模拟,考察了四套网格和四种亚格子应力模型对计算结果的影响,并与试验结果进行比较,验证数值计算方法的可靠性。首先采用大涡模拟方法计算了孔腔的脉动压力,并与中国船舶科学研究中心的空泡水筒试验结果进行对比分析。接着详细地分析孔腔脉动压力,研究亚格子应力模型和网格数量对计算结果的影响。最后,对数值计算得到的脉动压力多元阵列结果进行时间/空间Fourier变换,构建了三维脉动压力波数-频率谱。该文工作对今后流激结构振动噪声的预报和流动控制研究奠定了基础。  相似文献   

20.
当船体在波浪中运动的频率与液舱内液体振动的固有频率相近时,舱内液体将会发生剧烈的运动,即晃荡产生了.在船舶结构设计中,必须要考虑这种晃荡载荷及结构的响应.该文针对一超大型油轮(VLCC)液舱晃荡问题进行了三维仿真模拟.在DNV基于压力的晃荡评估方法的基础上,提出了应用有限元方法和任意拉格朗日-欧拉耦合技术进行该船全生命期内液舱晃荡仿真及强度评估的工程实用的步骤方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号