首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
The aim of this research is the implementation of a GPS-based modelling approach for improving the characterization of vehicle speed spatial variation within urban areas, and a comparison of the resulting emissions with a widely used approach to emission inventory compiling. The ultimate goal of this study is to evaluate and understand the importance of activity data for improving the road transport emission inventory in urban areas. For this purpose, three numerical tools, namely, (i) the microsimulation traffic model (VISSIM); (ii) the mesoscopic emissions model (TREM); and (iii) the air quality model (URBAIR), were linked and applied to a medium-sized European city (Aveiro, Portugal). As an alternative, traffic emissions based on a widely used approach are calculated by assuming a vehicle speed value according to driving mode. The detailed GPS-based modelling approach results in lower total road traffic emissions for the urban area (7.9, 5.4, 4.6 and 3.2% of the total PM10, NOx, CO and VOC daily emissions, respectively). Moreover, an important variation of emissions was observed for all pollutants when analysing the magnitude of the 5th and 95th percentile emission values for the entire urban area, ranging from −15 to 49% for CO, −14 to 31% for VOC, −19 to 46% for NOx and −22 to 52% for PM10. The proposed GPS-based approach reveals the benefits of addressing the spatial and temporal variability of the vehicle speed within urban areas in comparison with vehicle speed data aggregated by a driving mode, demonstrating its usefulness in quantifying and reducing the uncertainty of road transport inventories.  相似文献   

2.
Transportation CO2 emissions are expected to increase in the following decades, and thus, new and better alternatives to reduce emissions are needed. Road transport emissions are explained by different factors, such as the type of vehicle, delivery operation and driving style. Because different cities may have conditions that are characterized by diversity in landforms, congestion, driving styles, etc., the importance of assigning the proper vehicle to serve a particular region within the city provides alternatives to reduce CO2 emissions. In this article, we propose a new methodology that results in assigning trucks to deliver in areas such that the CO2 emissions are minimized. Our methodology clusters the delivery areas based on the performance of the vehicle fleet by using the k-means algorithm and Tukey’s method. The output is then used to define the optimal CO2 truck-area assignment. We illustrate the proposed approach for a parcel company that operates in Mexico City and demonstrate that it is a practical alternative to reduce transportation CO2 emissions by matching vehicle type with delivery areas.  相似文献   

3.
The purpose of our study is to develop a “corrected average emission model,” i.e., an improved average speed model that accurately calculates CO2 emissions on the road. When emissions from the central roads of a city are calculated, the existing average speed model only reflects the driving behavior of a vehicle that accelerates and decelerates due to signals and traffic. Therefore, we verified the accuracy of the average speed model, analyzed the causes of errors based on the instantaneous model utilizing second-by-second data from driving in a city center, and then developed a corrected model that can improve the accuracy. We collected GPS data from probe vehicles, and calculated and analyzed the average emissions and instantaneous emissions per link unit. Our results showed that the average speed model underestimated CO2 emissions with an increase in acceleration and idle time for a speed range of 20 km/h and below, which is the speed range for traffic congestion. Based on these results, we analyzed the relationship between average emissions and instantaneous emissions according to the average speed per link unit, and we developed a model that performed better with an improved accuracy of calculated CO2 emissions for 20 km/h and below.  相似文献   

4.
The critical component of all emission models is a driving cycle representing the traffic behaviour. Although Indian driving cycles were developed to test the compliance of Indian vehicles to the relevant emission standards, they neglects higher speed and acceleration and assume all vehicle activities to be similar irrespective of heterogeneity in the traffic mix. Therefore, this study is an attempt to develop an urban driving cycle for estimating vehicular emissions and fuel consumption. The proposed methodology develops the driving cycle using micro-trips extracted from real-world data. The uniqueness of this methodology is that the driving cycle is constructed considering five important parameters of the time–space profile namely, the percentage acceleration, deceleration, idle, cruise, and the average speed. Therefore, this approach is expected to be a better representation of heterogeneous traffic behaviour. The driving cycle for the city of Pune in India is constructed using the proposed methodology and is compared with existing driving cycles.  相似文献   

5.
In this work, a sample of vehicles has been instrumented to measure of variables that influence vehicle noise emissions in Madrid. A circuit reproducing a normal travel pattern in large city is traveled by a fleet of vehicle models representing the fleets of cars in a European city. A sample of drivers covers the test track under different traffic conditions. Driving parameters and noise emitted have been recorded in each test and average values have been extracted. These data have been analyzed to define the noise emissions produced by a vehicle in real driving conditions and to identify the noisiest driving behaviors.  相似文献   

6.
Exhaust emissions and fuel consumption of Heavy Duty Vehicles (HDVs) in urban and port areas were evaluated through a dedicated investigation. The HDV fleet composition and traffic driving from highways to the maritime port of Genoa and crossing the city were analysed. Typical urban trips linking highway exits to port gates and HDV mission profiles within the port area were defined. A validation was performed through on-board instrumentation to record HDV instantaneous speeds in urban and port zones. A statistical procedure enabled the building-up of representative speed patterns. High contrasts and specific driving conditions were observed in the port area. Representative speed profiles were then used to simulate fuel consumption and emissions for HDVs, using the Passenger car and Heavy duty Emission Model (PHEM). Complementary estimations were derived from Copert and HBEFA methodologies, allowing the comparison of different calculation approaches and scales. Finally, PHEM was implemented to assess the performances of EGR or SCR systems for NOX reduction in urban driving and at very low speeds.The method and results of the investigation are presented. Fuel consumption and pollutant emission estimation through different methodologies are discussed, as well as the necessity of characterizing very local driving conditions for appropriate assessment.  相似文献   

7.
We evaluate the constant acceleration, linearly decreasing acceleration, and aaSIDRA models in terms of generating second-by-second speed profiles for emission estimations at an intersection. The models are first calibrated using field data from individual vehicle trajectories. With the calibrated models, second-by-second speed and acceleration data are produced, and emissions are estimated using MOVES. Emission estimations based on the calibrated acceleration models are then compared with those based on field trajectory data. The constant acceleration model tends to overestimate emissions; both the linearly decreasing acceleration model and the aaSIDRA model provide accurate emission estimations.  相似文献   

8.
Knowledge of the driving cycle is an important requirement in the evaluation of exhaust emissions. Data were collected from trips performed on five routes between the home addresses in the surrounding areas and place of work at Napier University in Edinburgh. A real world Edinburgh motorcycle driving cycle (EMDC) is developed for each of the urban and rural roads, using this data. Forty-four trips were made on the routes in both urban and rural areas. We assess motorcycle speed, percentage time spent in cruise, accelerations, decelerations and idling and their statistical validity over trip lengths. The results show that EMDC has a cycle length of 770 and 656 s for urban and rural trips, which are higher than those of the European Commission’s driving cycle for cars used for emission estimations of motorcycles. Time spent in acceleration and deceleration modes of EMDC are found to be significantly higher than in other driving cycle studies, reflecting diverse driving conditions in Edinburgh.  相似文献   

9.
We evaluate the implications of a range of driving patterns on the tank-to-wheel energy use of plug-in hybrid electric vehicles. The driving patterns, which reflect short distance, low speed, and congested city driving to long distance, high speed, and uncongested highway driving, are estimated using an approach that involves linked traffic assignment and vehicle motion models. We find substantial variation in tank-to-wheel energy use of plug-in hybrid electric vehicles across driving patterns. Tank-to-wheel petroleum energy use on a per kilometer basis is lowest for the city and highest for the highway driving, with the opposite holding for a conventional internal combustion engine vehicle.  相似文献   

10.
A practical methodology for constructing a representative driving cycle reflecting the real-world driving conditions is developed for vehicle emissions testing and estimation. The methodology tackles three major tasks, i.e., data collection, route selection and cycle construction. Both car chasing and on-board measurement techniques were employed to collect vehicle speed data. Route selection was based on the records of average annual daily traffic of the road network between major residential areas and commercial/industrial areas. A variety of parameters were employed as the target statistics characterising the driving pattern in the construction of driving cycles. The performance value and speed-acceleration probability distribution were utilised to determine the best synthesised driving cycle. The method is easy to follow and the driving cycles are comparative to other renounced cycles.  相似文献   

11.
Growing concerns over climate change have led to an increasing interest in the role of the built environment to reduce transportation greenhouse gas (GHG) emissions. Many studies have reported that compact, mixed-use, and well-connected developments reduce vehicle miles traveled (VMT). Others, however, argue that densification and mixture of land uses can slow down vehicle movements, and consequently generate more driving emissions. Methodologically, VMT is only a proxy, not an exact measure of emissions. This study quantifies the net effects of the built environment on household vehicle emissions through a case study of Austin, TX. The study employed structural equation modeling (SEM) techniques and estimated path models to improve understanding of the relationship between the built environment and vehicle emissions. The results show a rather complex picture of the relationship. Densification can reduce regional vehicle emissions despite its secondary effect of reduced vehicle travel speed. A 1% increase in density was found to reduce household vehicle emissions by 0.1%. However, intensification of the design feature of the built environment in developed areas may work in the opposite direction; the modeling results showed a 1% increase in grid-like network being associated with 0.8% increase in household vehicle emissions. Based on the results, the study addressed the potential of and the challenges to reducing vehicle emissions through modifying the built environment in local areas.  相似文献   

12.
Wider deployment of alternative fuel vehicles (AFVs) can help with increasing energy security and transitioning to clean vehicles. Ideally, adopters of AFVs are able to maintain the same level of mobility as users of conventional vehicles while reducing energy use and emissions. Greater knowledge of AFV benefits can support consumers’ vehicle purchase and use choices. The Environmental Protection Agency’s fuel economy ratings are a key source of potential benefits of using AFVs. However, the ratings are based on pre-designed and fixed driving cycles applied in laboratory conditions, neglecting the attributes of drivers and vehicle types. While the EPA ratings using pre-designed and fixed driving cycles may be unbiased they are not necessarily precise, owning to large variations in real-life driving. Thus, to better predict fuel economy for individual consumers targeting specific types of vehicles, it is important to find driving cycles that can better represent consumers’ real-world driving practices instead of using pre-designed standard driving cycles. This paper presents a methodology for customizing driving cycles to provide convincing fuel economy predictions that are based on drivers’ characteristics and contemporary real-world driving, along with validation efforts. The methodology takes into account current micro-driving practices in terms of maintaining speed, acceleration, braking, idling, etc., on trips. Specifically, using a large-scale driving data collected by in-vehicle Global Positioning System as part of a travel survey, a micro-trips (building block) library for California drivers is created using 54 million seconds of vehicle trajectories on more than 60,000 trips, made by 3000 drivers. To generate customized driving cycles, a new tool, known as Case Based System for Driving Cycle Design, is developed. These customized cycles can predict fuel economy more precisely for conventional vehicles vis-à-vis AFVs. This is based on a consumer’s similarity in terms of their own and geographical characteristics, with a sample of micro-trips from the case library. The AFV driving cycles, created from real-world driving data, show significant differences from conventional driving cycles currently in use. This further highlights the need to enhance current fuel economy estimations by using customized driving cycles, helping consumers make more informed vehicle purchase and use decisions.  相似文献   

13.
Urban air quality is generally poor at traffic intersections due to variations in vehicles’ speeds as they approach and leave. This paper examines the effect of traffic, vehicle and road characteristics on vehicular emissions with a view to understand a link between emissions and the most likely influencing and measurable characteristics. It demonstrates the relationships of traffic, vehicle and intersection characteristics with vehicular exhaust emissions and reviews the traffic flow and emission models. Most studies have found that vehicular exhaust emissions near traffic intersections are largely dependent on fleet speed, deceleration speed, queuing time in idle mode with a red signal time, acceleration speed, queue length, traffic-flow rate and ambient conditions. The vehicular composition also affects emissions. These parameters can be quantified and incorporated into the emission models. There is no validated methodology to quantify some non-measurable parameters such as driving behaviour, pedestrian activity, and road conditions  相似文献   

14.
Motor vehicle emission rate models for predicting oxides of nitrogen (NOx) emissions are insensitive to vehicle modes of operation such as cruise, acceleration, deceleration, and idle, because they are based on average trip speed. Research has shown that NOx emissions are sensitive to engine load; hence, load-based variables need to be included in emissions models. Ongoing studies attempting to incorporate these `modal' variables have experienced difficulties with: (1) incomplete and/or non-representative data sets of emissions test data vis-a-vis the modal operating profiles of the tested vehicles; (2) lack of information for predicting on-road operating parameters of vehicles; and (3) non-representative vehicles recruited for emissions tests.The objective of this research was to develop a statistical model for predicting NOx emissions from light-duty gasoline motor vehicles. The primary end use of this model is forecasting, rather than explanation of the factors that affect NOx emissions, which brings to bear different requirements from the statistical model. The three challenges noted above are addressed by: (1) analyzing a data set of more than 13 000 hot-stabilized laboratory treadmill tests on 19 driving cycles (specific speed versus time testing conditions), and 114 variables describing vehicle, engine and test cycle characteristics; (2) making the models compatible with empirical data on how vehicles are being operated in-use; and (3) developing statistical weights to account for the differences in model year distributions between the emissions testing database and the current national on-road fleets.The NOx emissions model is estimated using ordinary least-squares regression techniques, with transformed response variable and regression weights. Tree regression is employed as a tool for mining relationships among variables in the data, with particular focus on identifying useful interactions among discrete variables. Details of the model development process are presented, as well as results for the final model showing the predicted emissions algorithm for the current motor vehicle fleet in Atlanta, GA metropolitan region.  相似文献   

15.
Driving cycles are used to assess vehicle fuel consumption and pollutant emissions. The premise in this article is that suburban road-work vehicles and airport vehicles operate under particular conditions that are not taken into account by conventional driving cycles. Thus, experimental data were acquired from two pickup trucks representing both vehicle fleets that were equipped with a data logger. Based on experimental data, the suburban road-work vehicle showed a mixed driving behavior of high and low speed with occasional long periods of idling. In the airport environment, however, the driving conditions were restricted to airport grounds but were characterized by many accelerations and few high speeds. Based on these measurements, microtrips were defined and two driving cycles proposed. Fuel consumption and pollutant emissions were then measured for both cycles and compared to the FTP-75 and HWFCT cycles, which revealed a major difference: at least a 31% increase in fuel consumption over FTP-75. This increased fuel consumption translates into higher pollutant emissions. When CO2 equivalent emissions are taken into account, the proposed cycles show an increase of at least 31% over FTP-75 and illustrate the importance of quantifying fleet speed patterns to assess CO2 equivalent emissions so that the fleet manager can determine potential gains in energy or increased pollutant emissions.  相似文献   

16.
This paper describes tailpipe emission results generated by the Vehicle Performance and Emissions Monitoring system (VPEMS). VPEMS integrates on‐board emissions and vehicle/driver performance measurements with positioning and communications technologies, to transmit a coherent spatio‐temporally referenced dataset to a central base station in near real time. These results focus on relationships between tailpipe emissions of CO, CO2, NOx and speed and acceleration. Emissions produced by different driving modes are also presented. Results are generally as one would expect, showing variation between vehicle speed, vehicle acceleration and emissions. Data is based upon a test run in central London on urban streets with speeds not exceeding about 65 km/h. The results presented demonstrate the capabilities of the system. Various issues remain with regard to validation of the data and expansion of the system capability to obtain additional vehicle performance data.  相似文献   

17.
Transportation sector accounts for a large proportion of global greenhouse gas and toxic pollutant emissions. Even though alternative fuel vehicles such as all-electric vehicles will be the best solution in the future, mitigating emissions by existing gasoline vehicles is an alternative countermeasure in the near term. The aim of this study is to predict the vehicle CO2 emission per kilometer and determine an eco-friendly path that results in minimum CO2 emissions while satisfying travel time budget. The vehicle CO2 emission model is derived based on the theory of vehicle dynamics. Particularly, the difficult-to-measure variables are substituted by parameters to be estimated. The model parameters can be estimated by using the current probe vehicle systems. An eco-routing approach combining the weighting method and k-shortest path algorithm is developed to find the optimal path along the Pareto frontier. The vehicle CO2 emission model and eco-routing approach are validated in a large-scale transportation network in Toyota city, Japan. The relative importance analysis indicates that the average speed has the largest impact on vehicle CO2 emission. Specifically, the benefit trade-off between CO2 emission reduction and the travel time buffer is discussed by carrying out sensitivity analysis in a network-wide scale. It is found that the average reduction in CO2 emissions achieved by the eco-friendly path reaches a maximum of around 11% when the travel time buffer is set to around 10%.  相似文献   

18.
19.
20.
Conceptually, a Green Light Optimal Speed Advisory (GLOSA) system suggests speeds to vehicles, allowing them to pass through an intersection during the green interval. In previous papers, a single speed is computed for each vehicle in a range between acceptable minimum and maximum values (for example between standstill and the speed limit). This speed is assumed to be constant until the beginning of the green interval, and sent as advice to the vehicle. The goal is to optimise for a particular objective, whether it be minimisation of emissions (for environmental reasons), fuel usage or delay. This paper generalises the advice given to a vehicle, by optimising for delay over the entire trajectory instead of suggesting an individual speed, regardless of initial conditions – time until green, distance to intersection and initial speed. This may require multiple acceleration manoeuvres, so the advice is sent as a suggested acceleration at each time step. Such advice also takes into account a suitable safety constraint, ensuring that vehicles are always able to stop before the intersection during a red interval, thus safeguarding against last-minute signal control schedule changes. While the algorithms developed primarily minimise delay, they also help to reduce fuel usage and emissions by conserving kinetic energy. Since vehicles travel in platoons, the effectiveness of a GLOSA system is heavily reliant on correctly identifying the leading vehicle that is the first to be given trajectory advice for each cycle. Vehicles naturally form a platoon behind this leading vehicle. A time loop technique is proposed which allows accurate identification of the leader even when there are complex interactions between preceding vehicles. The developed algorithms are ideal for connected autonomous vehicle environments, because computer control allows vehicles’ trajectories to be managed with greater accuracy and ease. However, the advice algorithms can also be used in conjunction with manual control provided Vehicle-to-Infrastructure (V2I) communication is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号