首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
保温护道对冻土路基地温特征的影响   总被引:9,自引:0,他引:9  
根据青藏公路昆仑山段实际地温观测数据与工程地质特点,建立了路基温度场模拟计算的数学物理模型及其边界条件,运用有限元方法模拟保温护道对路基温度场的影响,并结合青藏公路保温护道段工程试验研究,通过对比分析研究了保温护道对路基地温特征的影响规律。结果表明:修筑保温护道在一定程度上恢复了青藏公路在以往修筑过程中就地取土所破坏的路基两侧冻土环境,对防止融化盘的扩大,减少与减缓路基病害的发生与发展起到了十分积极的作用;相对于未遭破坏的天然地袁而言,保温护道表面条件不利于冻土生存,冻土退化趋势有所加强。从路基热稳定性的角度,设置保温护道虽能有限度地缩小融化盘,其同时增大融化深度并提高年平均地温。人为上限、年平均地温及融化盘等路基温度场特征要素对设置保温护道反应不敏感,因此工程中不应将保温护道作为提高路基热稳定性的主要措施。  相似文献   

2.
邹泽雄  娄瑜 《公路》2006,(6):60-65
在多年冻土区修建铁路站场路基,打破了原来天然地表与外界的热力平衡,地下温度场将重新分布。根据此特征可以推断多年冻土的发展演化趋势以及评定路基的稳定状况,结合实际监测数据,利用AN SY S软件对路基下温度场进行有限元数值模拟。模拟计算结果表明:路基下冻土上限发生了上移,多年冻土得到了保护;试验段内冻土人为上限和未受路基影响的冻土天然上限均逐年下降;同时,路基阳坡、阴坡两侧地下的温度场分布特征的差异构成了路基不均匀变形和路面裂缝的潜在威胁。  相似文献   

3.
青藏公路高温冻土区沥青路面下土体热动态分析   总被引:1,自引:0,他引:1  
利用青藏公路多年冻土区温度的监测资料,分析了高温冻土区普通路基下冻土的热状态及其人为上限的演变特征,并与自然地表下的变化特征进行对比。结果表明:1)沥青路面近地表温度年增幅明显大于自然地表的温度年增幅;2)与自然地表下相比,沥青路面下深部(h>6m)土体具有较小的温度梯度,对外界热扰动敏感;多年冻土温度逐年升高,不利于路基的长期稳定;3)高温冻土路基下浅部土体,冻结期明显小于融化期。融化期时间提前至3月底4月初,而冻结期开始时间与自然地表下均为11月底;融化深度大于冻结深度;4)沥青路面下多年冻土人为上限逐年下降,下降速率快于多年冻土天然上限下降速率,并且在多年冻土顶板上部已经形成贯通的融化层,融化层厚度逐年加厚。  相似文献   

4.
本文以五道梁地区典型路基为研究对象,对多年冻土地区路基温度场进行数值模拟,研究了不同上垫面类型对路基温度场的影响。结果表明:季节冻结过程的特点主要是单向冻结和双向融化,上边界负温变化大而下边界正温变化小,冻深主要受上边界制约。季节融化过程特点则是单向融化和双向冻结,上边界为正温变化大,下边界为负温变化小,同样主要受上边界制约。位于多年冻土地区的水泥路面结构可把路面的年均温度降低到2.2℃左右。受全球气候变暖的影响,路基各边界处年均温度均呈现上升的趋势,各边界升温速率从快到慢排序依次为:沥青路面、水泥路面、阳坡、天然地面、阴坡。  相似文献   

5.
黄土路基温度场数值分析   总被引:1,自引:0,他引:1  
基于黄土高原的气候特征及现有文献,提出了模拟黄土高原气候因素的地表温度场数值计算方法,并模拟气温、辐射量、湿度等边界条件,经过对黄土高原边界因素的分析研究,确定了适于黄土高原的模型参数.对西安和延安两地地表温度的计算结果与实测结果的对比分析表明了文内方法的合理性,分析了黄土路基温度场随气候的动态变化,探讨了温度梯度对非饱和黄土路基稳定性的影响,表明外界条件的昼夜变化对路基路面温度的影响不超过30 cm.  相似文献   

6.
根据能量平衡原理,建立的能够反映冻土温度场变化特征的控制方程。通过对比实测数据与数值计算数据,验证模型的可靠性。利用该模型分析了边坡坡度对温度场的影响。结果表明:随着坡度的减缓,冻土上限有所提高。继续减缓坡度,冻土上限将下降。路堤边坡及坡脚下浅层地温随坡度的变缓而降低,坡度对较低年平均气温的路基温度场影响较小。越是靠近路堤中心线位置,受到路基边坡的影响越大。  相似文献   

7.
基于远程采集系统的季冻区路基温度场分析   总被引:1,自引:0,他引:1  
为掌握季冻区已建路基温度场的分布特点和变化规律,选取哈尔滨市周边地区3个典型断面,利用自主开发的路基温度远程采集系统建立温度场。并对采集系统发回的一个冻融循环周期数据进行分析。结果显示:随着路基纵深的增加,温度梯度绝对值随之减小,温度波动幅度也越来越小且越来越平缓;各时期路基温度场以道路中线为中心,两侧基本呈对称状态。中央分隔带处冻结程度比两侧路肩处明显,路基冻结比天然地面快,但融化比天然地面慢,融化期阳面要早于阴面;路基填高为2.5m的断面冻结程度大于路基填高为1.5m的断面,融化过程无明显差别。  相似文献   

8.
该文以青藏铁路多年冻土路基为依托,通过现场测温和地质雷达探测等手段,分析了多年冻土区各种典型路基的人为上限形态特点,提出了青藏铁路多年冻土区各种典型路基人为上限形态分类。研究发现:青藏铁路路基受路基填高、结构形式、走向坡向等因素的共同影响,主要形成3种形态的路基人为上限:A型、B型和C型。A型人为上限面升入堤身形成对路基基底稳定有利的冻土核;B型人为上限面升高至基底原天然地面附近;C型人为上限比天然上限有所上升,但未上升至基底地表附近,仍在原天然地层季节活动层范围内。  相似文献   

9.
以天河客运站折返线暗挖隧道为背景,分析三维温度场同二维温度场区别及冻结壁厚度的发展趋势,通过ANSYS对冻结区域的温度场进行数值模拟,对冻结区域进行温度的定量评价,并分析了各个冻结时间段的温度场分布、冻结壁厚度。对数值模拟模型的建立进行了优化设计,对数值模拟计算的单元点划分粗细部位也进行了优化,从而建立贴近实际的模型,提高计算精度,给实际的设计和施工提供可靠的温度数据。  相似文献   

10.
胡俊  韩宏超 《隧道建设》2014,34(Z1):105-110
当采用垂直冻结工法作为盾构隧道端头地层加固方式时,确定冻结管间距及加固所需范围与工艺、掌握冻土帷幕温度场发展与分布规律等是需要解决的关键问题。结合南京地铁10号线过江隧道盾构始发工程,运用有限元分析软件,在其他影响因素不变的情况下,研究不同冻结管间距对垂直冻结壁温度场发展的影响。数值分析表明: 1)用所建数值模型来模拟垂直冻结壁温度场的变化过程是可行的; 2)间距减小对温度场影响较为显著,冻结管间距每增大0.1 m,冻结壁交圈时间增加约1 d; 3)随着冻结管间距的增大,冻结壁交圈时间线性增大; 4)冻结管间距越小,垂直冻结帷幕温度越低,形成的垂直冻结壁强度越均匀。  相似文献   

11.
冻结法施工中,冻结管的布置间距往往大于单管冻结锋面半径,且考虑到冻结管影响范围有限,为增强冻结温度场计算的准确性,基于势函数叠加原理,推导双管冻结叠加稳态温度场的计算公式,并将其周期化得到单排等距多管稳态温度场。结合依托工程的地层参数,通过数值模拟对推导公式进行验证。研究表明:1)考虑相邻冻结管叠加影响范围有限性的双管稳态温度场计算公式能较准确地预测出一般冻结期内的温度分布规律; 2)在双管温度叠加区内,冻结管连线中点为中垂线温度的最低点,且随着冻结管间距的减小,该点温度不断下降,但中垂线上冻结壁厚度并不改变; 3)随着冻结壁厚度的增加,双管稳态温度场接近加强单管稳态温度场。  相似文献   

12.
杨开业 《公路工程》2016,(4):196-201
以蓝山湘江源至高塘坪公路段为工程背景,根据构建的格宾及土体格栅的路基边坡主动和被动破坏模式,运用极限分析原理获得了路基边坡挡土墙发生主、被动破坏时土压力的上限解。并以此为基础,揭示了土体强度参数、格栅加固方式等因素对边坡稳定性和主、被动土压力的影响规律。最后,借助数值分析软件对该路段的边坡稳定性进行了数值模拟研究,可为工程路基边坡施工和支护提供借鉴。  相似文献   

13.
结合季节冻土地区实际气候条件,基于第II类与第III类混合热边界条件,模拟季节冻土地区路基温度场变化规律,分析阴阳坡面温度差异;在考虑冻结锋面位置和形状基础上,引入土体的冻胀率和融沉系数,研究由阴阳坡温度差异引起的公路路基变形发育过程,揭示路基破坏机理。研究结果表明:在有地下水源的情况下,坡向不同而引起的阴阳坡温度差异对季节冻土地区路基横向不均匀变形影响较大;在冻结过程中靠近阴坡的路肩与坡脚变形较大,在融化过程中阴坡边坡顶部处的沉降最大,冻结和融化过程中边坡及靠近阴坡侧路基顶部均易产生张拉破坏。因此,季节冻土地区公路路基在设计与养护时应特别考虑阴坡及靠近阴坡面的路肩,可在阴阳坡面采取不同的设计与养护措施减轻阴阳坡温度差异。  相似文献   

14.
杨峰  倪玲 《交通科技》2011,(3):70-72
利用ANSYS有限元软件,选取合适的物理参数对冻结壁的温度场进行数值模拟,得到冻结壁的温度分布再与实测的测温孔的温度比较,从而论证模拟的数据与实测温度的吻合度。  相似文献   

15.
广州地铁天河站水平冻结施工数值分析   总被引:3,自引:3,他引:0       下载免费PDF全文
丁睿 《路基工程》2010,(2):59-62
结合国内外水平冻结规模最大的广州地铁天河客运站折返线隧道冻结施工,采用数值仿真对冻结壁的温度场分布进行分析得出:冻结壁的交圈时间为17.5天,形成平均温度-10℃的冻结壁所需的时间为86.7天,形成平均温度-8℃的冻结壁所需的时间为68.3天;冻结壁主面冰峰面的扩展速度拱部冻结比仰拱快。文中还首次研究了冻结管偏斜对冻结温度场的影响:冻结壁冰峰面的扩展速度有所降低,交圈时间和达到设计温度的时间有所延长。  相似文献   

16.
为准确掌握路面覆盖效应下路基温度场的分布特性及变化规律,分析了强蒸发地区的路基温度场影响因素,以强蒸发地区路基温度场一年多的跟踪观测数据为基础,开展了强蒸发地区路面覆盖效应下路基温度场分布规律的研究。结果表明:路基不同深度温度变化存在相对滞后性;大气温度对路基温度场影响深度≤90 cm,且在该深度范围内呈非线性传递;路面覆盖效应导致温度在路面底部聚集。  相似文献   

17.
考虑通风管路基中通风管的空气对流换热特点,摈弃把通风管的影响作为边界条件处理的方法,建立多年冻土区的通风管路基的数值模型,对设置和未设置风门的通风管路基的温度特性进行数值模拟,分析2种情况下通风管路基的调温效果,为多年冻土区的路基工程的建设和安全运营提供技术支撑.研究表明:通风管路基能够明显地降低冻土地基的温度,提高冻土的人为上限;与无风门的路基相比,有风门的通风管路基降低冻土地基的温度的效果更加明显,降温作用发生得更早,冻土人为上限的提高幅度更大,路基中心和路肩下的地基温度降低更快,且温度分布较均匀,路基温度稳定所需要的时间减少.  相似文献   

18.
为考察多年冻土路基在温度变化下的融沉问题,建立了相应的有限元模型。通过选取典型断面,在青藏公路实测数据的基础上进行了路基温度场计算模拟,其结果为后续的路基融沉提供了温度场-力学耦合计算的前提。路基融沉计算模型在导入温度场后,分别进行了自重作用和温度作用下的融深对地基沉降变形影响的计算。结果表明,不同的冻土融深对沉降变形影响不同。多年冻土地区修建公路,应采取措施保护冻土上限,减小路基融化深度。最后,在融沉计算的基础上提取了相应的融沉曲线回归式。  相似文献   

19.
为研究多年冻土区G214高等级公路中隔热层、片石层对24 m宽路基的热影响效果,根据多孔介质的热对流及考虑相变的传热理论,分别对两种结构路基的温度场进行了模拟分析。计算结果表明:当路基宽度从12 m增加到24 m时,隔热层厚度应从10 cm增加到30 cm才可确保路基下冻土上限的稳定,但保温层所产生的热积累效应将使路基下冻土温度明显升高,且高温冻土核范围较大。从工程措施的可靠性及工程费用角度考虑,EPS隔热层不适用于G214宽幅路基中。如采用厚度大于1.8 m的片石层,则可稳定路基下冻土上限和增加冻土的冷储量,但同时要加强对路基边坡的热防护。  相似文献   

20.
以某高速公路斜坡地段红层填料路基因排水管堵塞引起路基边坡发生曲面式沉陷为背景,借助数值模拟软件分析不同因素变化对路基三维渗流场及破坏范围的影响,并提出此类路基病害的防治方法.研究结果表明:三维渗流场在平面投影图上呈"扇形"分布,在空间上呈现为靠近排水管处位置较高、远离排水管处位置较低,边坡呈曲面式沉陷破坏;管内水头越高...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号