首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biogeochemistry of the sulfur cycle in a ca. 5-m-long sediment core from the eastern slope (221 m water depth) of the Landsort Deep in the west-central Baltic Sea was investigated by analyzing the solid phase records of sulfur isotopes and pyrite textures, besides selected main and minor elements. The sediments were deposited during post-glacial history of the Baltic Sea when the basin experienced alteration of brackish (Yoldia Sea, Littorina Sea) and freshwater (Baltic Ice Lake, Ancylus Lake) conditions. The stable isotopic composition of total sulfur was analyzed as a function of depth. In selected samples pyrite (FeS2), greigite (Fe3S4), and barite (BaSO4) fractions were separated for isotope analyses. Pyrite textures were analyzed by SEM and optical microscopy.Microbial reactions associated with the oxidation of organic matter resulted in assemblages of authigenic sulfide minerals which for the post-Ancylus Lake brackish water environment are dominated by pyrite and for freshwater environments by Fe-monosulfides. The sulfur isotopic composition of the brackish water Littorina Sea sediments (δ34S between −40 and −27‰ vs. V-CDT) is believed to be determined by cellular sulfate reduction rates and reactions involving intermediate sulfur species. The availability of reactive iron and decomposable organic matter as well as sedimentation rate and the chemocline position are important variables upon the δ34S values of sulfides in brackish water environment. The syn-depositional abundance of sulfur and organic matter, and transport of dissolved sulfur species vs. rates of microbial reactions determine δ34S in the freshwater sediments. The upper part of the Ancylus Lake sediments is sulfidized by downward diffusing H2S and/or sulfate from overlying brackish water sediments. Minor concretionary barite formation in the freshwater sediments is most likely due to the reaction of pore water sulfate diffusing downward from brackish water sediments with barium desorbed from freshwater sediments. The size distribution of pyrite framboids in the brackish sediments indicates that the formation mainly occurred from anoxic pore waters, although some pyrite formation in an anoxic water column cannot be excluded.  相似文献   

2.
Organic carbon budget for the Gulf of Bothnia   总被引:1,自引:0,他引:1  
We calculated input of organic carbon to the unproductive, brackish water basin of the Gulf of Bothnia from rivers, point sources and the atmosphere. We also calculated the net exchange of organic carbon between the Gulf of Bothnia and the adjacent marine system, the Baltic Proper. We compared the input with sinks for organic carbon; permanent incorporation in sediments and mineralization and subsequent evasion of CO2 to the atmosphere. The major fluxes were riverine input (1500 Gg C year− 1), exchange with the Baltic Proper (depending on which of several possible DOC concentration differences between the basins that was used in the calculation, the flux varied between an outflow of 466 and an input of 950 Gg C year 1), sediment burial (1100 Gg C year− 1) and evasion to the atmosphere (3610 Gg C year− 1). The largest single net flux was the emission of CO2 to the atmosphere, mainly caused by bacterial mineralization of organic carbon. Input and output did not match in our budget which we ascribe uncertainties in the calculation of the exchange of organic carbon between the Gulf of Bothnia and the Baltic Proper, and the fact that CO2 emission, which in our calculation represented 1 year (2002) may have been overestimated in comparison with long-term means. We conclude that net heterotrophy of the Gulf of Bothnia was due to input of organic carbon from both the catchment and from the Baltic Proper and that the future degree of net heterotrophy will be sensible to both catchment export of organic carbon and to the ongoing eutrophication of the Baltic Proper.  相似文献   

3.
Stable isotope (δ13C and δ15N) analyses were performed on suprabenthic fauna collected in the western Mediterranean (NW Balearic Islands), at depths ranging between 350 and 780 m. Samples were collected seasonally at bi-monthly intervals during six cruises performed between August 2003 and June 2004, using a Macer-GIROQ suprabenthic sledge (0.5 mm mesh size). Twenty-four separate species (5 mysids, 12 amphipods, 2 cumaceans, 2 isopods, 1 euphausiid, 1 decapod and 1 fish) and bulk copepods were analyzed on a seasonal basis for stable carbon and nitrogen isotopes. Stable nitrogen isotope ratios (δ15N) ranged from 2.3‰ (the amphipod Lepechinella manco in September 2003) to 13.0‰ (the amphipod Rhachotropis caeca in August 2003). δ13C values ranged from − 24.2 (the cumacean Campylaspis sulcata in June 2004) to − 16.1 (the amphipod Bruzelia typica in November 2006). Both δ13C and δ15N values suggest that there are three trophic levels within the suprabenthic community. However, considering the bathymetric range of the species, the results suggest that the deepest assemblage supported only two trophic levels. The stable isotope ratios of suprabenthic fauna displayed a continuum of values and confirmed a wide spectrum of feeding types (from filter-feeders to predators). In general, and in spite of the poor knowledge about diets available for most suprabenthic species, higher δ15N were found for carnivorous amphipods (e.g. Rhachotropis spp., Nicippe tumida) consuming copepods. Low overlap for δ13C and δ15N values was observed, though δ15N values where less variable than δ13C, which suggests high resource partitioning in this assemblage. Seasonal variations in isotopic composition for both δ13C and δ15N were low (less than 1‰ and 3‰, respectively) and variable depending on species. Low correlations between δ13C and δ15N of suprabenthic fauna were found for all periods studied, though increasing from February 2004 to June 2004 (after the main peak of primary production in surface). C:N ratio (indicator of lipid content) showed higher values in summer than in winter. This suggests that lipid content may explain the seasonal patterns of δ13C variability and, due to the increase of storage products in phytoplankton and zooplankton, it possibly indicates the peak of primary production at the surface.  相似文献   

4.
In many parts of the world coastal waters with anthropogenic eutrophication have experienced a gradual depletion of dissolved silica (DSi) stocks. This could put pressure on spring bloom diatom populations, e.g. by limiting the intensity of blooms or by causing shifts in species composition. In addition, eutrophication driven enhanced diatom growth is responsible for the redistribution of DSi from the water phase to the sediments, and changes in the growth conditions may be reflected in the sediment diatom stratigraphy.To test for changes in diatom communities we have analyzed four sediment cores from the Baltic Sea covering approximately the last 100 years. The sediment cores originate from the western Gulf of Finland, the Kattegat, the Baltic Proper and the Gulf of Riga. Three out of the four cores reveal only minor changes in composition of diatom assemblages, while the Gulf of Riga core contains major changes, occurring after the second World War. This area is set apart from the other Baltic Sea basins by a high frequency of low after spring bloom DSi concentrations (< 2 µmol L− 1) during a relatively well defined time period from 1991–1998. In 1991 to 1993 a rapid decline of DSi spring concentrations and winter stocks (down to 5 µmol L− 1) in the Gulf was preceded by exceptionally intense diatom spring blooms dominated by the heavily silicified species Thalassiosira baltica (1991–1992; up to 5.5 mg ww L− 1). T. baltica has been the principal spring bloom diatom in the Gulf of Riga since records began in 1975. DSi consumption and biomass yield experiments with cultured T. baltica suggest that intense blooms can potentially exhaust the DSi stock of the water column and exceed the annual Si dissolution in the Gulf of Riga. The phytoplankton time series reveals another exceptional T. baltica bloom period in 1981–1983 (up to 8 mg L− 1), which, however, took place before the regular DSi measurements. These periods may be reflected in the conspicuous accumulation of T. baltica frustules in the sediment core corresponding to ca. 1975–1985.  相似文献   

5.
In this paper the results of a study on the distribution of pore water phosphates and ammonia, and their fluxes under anoxic condition in a deep (> 70 m) accumulation-type bottom of the south-eastern Baltic Sea, namely in the Gdańsk Deep and the adjacent areas, are presented. All measurements were taken during the growth period, i.e. in September 2000, April 2001 and June 2002. Benthic phosphate and ammonia fluxes were estimated using Fick's First Law. Phosphate and ammonia concentrations ranged from 7.5 to 266.3 μmol dm− 3 and from 53.6 to 1248.3 μmol dm− 3, respectively. The values recorded in the central part of the Gdańsk Deep were lower than those found both on its slopes and on the SW slope of the Gotland Deep. The lowest phosphate contents were typical of the Oblique Sill which separates the Gdańsk and Gotland Deeps.In 1993–2002, as a result of anoxia the sediments in the Gdańsk Deep released about 5.1 × 103 t P and 22.8 × 103 t N. These loads supplied on average 1.5% and 0.9% of phytoplankton's demand for P and N, respectively. In comparison to the total external load of nutrients discharged to the Gulf of Gdańsk (i.e. 8.79 × 103 t year− 1 Ptot and 130.79 × 103 t year− 1 Ntot; [Witek, Z., Humborg, Ch., Savchuk, O., Grelowski, A. and Łysiak-Pastuszak, E., 2003. Nitrogen and phosphorus budgets of the Gulf of Gdańsk (Baltic Sea). Est. Coast. Shelf Sci., 57:239–248.]), the return flux of P and N from the anoxic sediments to the water column in the Gdańsk Deep was a minor source of these elements.  相似文献   

6.
We develop a layered “box model” to evaluate the major effects of estuarine eutrophication of the Szczecin lagoon which can be compared with integrating measures (chlorophyll a (Chl a), sediment burial, sediment oxygen consumption (SOC), input and output of total nutrient loads) and use it to hindcast the period 1950–1996 (the years when major increase in nutrient discharges by the Oder River took place). The following state variables are used to describe the cycling of the limiting nutrients (nitrogen and phosphorus): phytoplankton (Phy), labile and refractory detritus (DN, DNref, DP, DPref), dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and oxygen (O2). The three layers of the model include two water layers and one sediment layer. Decrease of the carrying capacity with respect to the increased supply of organic matter of the system with advancing eutrophication over the period studied is parameterized by an exponential decrease of the sediment nitrogen fluxes with increasing burial, simulating changing properties from moderate to high accumulating sediments. The seasonal variation as well as the order of magnitude of nutrient concentrations and phytoplankton stocks in the water column remains in agreement with recent observations. Calculated annual mean values of nutrient burial of 193 mmol N m−2 a−1 and 23 mmol P m−2 a−1 are supported by observed values from geological sediment records. Estimated DIN remineralization in the sediments between 100 and 550 mmol N m−2 a−1 corresponds to SOC measurements. Simulated DIP release up to 60 mmol P m−2 a−1 corresponds to recent measurements. The conceptual framework presented here can be used for a sequential box model approach connecting small estuaries like the Szczecin lagoon and the open sea, and might also be connected with river box models.  相似文献   

7.
The potential for carbon export and the role of siliceous plankton in the cycling of C and N was assessed in natural plankton assemblages in the Santa Barbara Basin, California, by examining uptake rates of inorganic carbon, nitrate and silicic acid. In April–August 1997, the concentrations of chlorophyll a, particulate organic carbon, particulate organic nitrogen and biogenic silica were measured twice monthly, and results revealed the occurrence of at least three blooms, the largest in June. Particulate elemental ratios of C, N and Si were similar to ratios of nutrient-replete diatoms, suggesting that they dominated this bloom. Mean integrated rates of carbon, nitrate and silicon uptake during the 4-month study period are similar to other productive coastal and upwelling regions (103, 8.3 and 13 mmol m−2 day−1, respectively). New production rates were twice as high as previously reported in this region and indicate that high rates of new production along eastern boundary currents are not confined to the major coastal upwelling regions. C/NO3, Si/NO3 and Si/C uptake ratios varied widely, and mean integrated ratios were 14±5.4, 1.6±1.0 and 0.12±0.07 (S.D.), respectively. That mean C/NO3 uptake ratio corresponds to an f-ratio of about 0.5 indicating a large potential for particulate export. Based on the average Si/NO3 and Si/C uptake ratios, diatoms could perform all of the primary production and nitrate uptake that occurred during the study; these rates also suggest that export is controlled by diatoms in this system. The mean Si/C biomass ratio was lower than the mean Si/C uptake ratio, consistent with the preferential export of Si relative to C observed in sediment traps in the basin. The study took place during a period of surface-water warming, with nitrate and silicic acid concentrations decreasing throughout the onset of the 1997–1998 El Niño conditions. Although diatoms contributed less to particulate biomass during the low nutrient conditions, high f-ratios (0.33–0.66) were maintained.  相似文献   

8.
Methane (CH4) concentrations were measured in the water column, in sediment porewaters, and in atmospheric air, in the Ría de Vigo, NW Spain, during both the onset (April 2003) and at the end of (September 2004) seasonal upwelling. In addition, CH4 concentration and stable isotopic signatures (δ13CH4) were measured in porewaters, and sediment methanogenesis and aerobic oxidation of CH4 were determined in sediment incubations. Surface water column CH4 (2 m depth) was in the range 3–180 nmol l− 1 (110–8500% saturation) and followed a generally landward increase but with localised maxima in both the inner and middle Ría. These maxima were consistent with CH4 inputs from underlying porewaters in which CH4 concentrations were up to 3 orders of magnitude higher (maximum 350 μmol l− 1). Surface water CH4 concentrations were approximately three times higher in September than in April, consistent with a significant benthic CH4 flux driven by enhanced sediment methanogenesis following the summer productivity maximum. CH4 and δ13CH4 in sediment porewaters and in incubated sediment slurries (20 °C) revealed significant sediment CH4 oxidation, with an apparent isotopic fractionation factor (rc) of  1.004. Using turbulent diffusion models of air–sea exchange we estimate an annual emission of atmospheric CH4 from the Ría de Vigo of 18–44 × 106 g (1.1–2.7 × 106 mol). This estimate is approximately 1–2 orders of magnitude lower than a previous estimate based on a bubble transport model.  相似文献   

9.
Silicon dynamics in the Oder estuary, Baltic Sea   总被引:1,自引:0,他引:1  
Studies on dissolved silicate (DSi) and biogenic silica (BSi) dynamics were carried out in the Oder estuary, Baltic Sea in 2000–2005. The Oder estuary proved to be an important component of the Oder River–Baltic Sea continuum where very intensive seasonal DSi uptake during spring and autumn, but also BSi regeneration during summer take place. Owing to the regeneration process annual DSi patterns in the river and the estuary distinctly differed; the annual patterns of DSi in the estuary showed two maxima and two minima in contrast to one maximum- and one minimum-pattern in the Oder River. DSi concentrations in the river and in the estuary were highest in winter (200–250 μmol dm− 3) and lowest (often less than 1 μmol dm− 3) in spring, concomitant with diatom growth; such low values are known to be limiting for new diatom growth. Secondary DSi summer peaks at the estuary exit exceeded 100 μmol dm− 3, and these maxima were followed by autumn minima coinciding with the autumn diatom bloom. Seasonal peaks in BSi concentrations (ca. 100 μmol dm− 3) occurred during the spring diatom bloom in the Oder River. Mass balance calculations of DSi and BSi showed that DSi + BSi import to the estuary over a two year period was 103.2 kt and that can be compared with the DSi export of 98.5 kt. The difference between these numbers gives room for ca. 2.5 kt BSi to be annually exported to the Baltic Sea. Sediment cores studies point to BSi annual accumulation on the level of 2.5 kt BSi. BSi import to the estuary is on the level of ca. 10.5 kt, thus ca. 5 kt of BSi is annually converted into the DSi, increasing the pool of DSi that leaves the system. BSi concentrations being ca. 2 times higher at the estuary entrance than at its exit remain in a good agreement with the DSi and BSi budgeting presented in the paper.  相似文献   

10.
The diffusive and in situ fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA) have been measured and an estimation has been made of the water–atmosphere fluxes of CO2 in three estuarine systems of the Cantabrian Sea during the spring of 1998. Each of these systems undergoes a different anthropogenic influence. The diffusive fluxes of dissolved inorganic carbon and total alkalinity obtained present values ranging between 0.54–2.65 and 0.0–2.4 mmol m−2 day−1, respectively. These ranges are in agreement with those of other coastal systems. The in situ fluxes are high and extremely variable (35–284 mmol TA m−2 day−1, 43–554 mmol DIC m−2 day−1 and 22–261 mmol dissolved oxygen (DO) m−2 day−1), because the systems studied are very heterogeneous. The values of the ratio of the in situ fluxes of TA and DIC show on average that the rate of dissolution of CaCO3 is 0.37 times that of organic carbon oxidation. Equally, the interval of variation of the relationship between the benthic fluxes of inorganic carbon and oxygen (FDIC/FDO) is very wide (0.3–13.9), which demonstrates the different contributions made by the processes of aerobic and anaerobic degradation of the organic matter, as well as by the dissolution–precipitation of CaCO3. The water–atmosphere fluxes of CO2 present a clear dependence on the salinity. The brackish water of these systems (salinity<20), where maximum fluxes of 989 mmol m−2 day−1 have been estimated, act as a source of CO2 to the atmosphere. The more saline zones of the estuary (salinity>30) act as a sink of CO2, with fluxes between −5 and −10 mmol m−2 day−1.  相似文献   

11.
This study presents oceanic distributions of stable isotopes (δ18O of water and δ13C of ΣCO2) and CFC-12 from samples collected during the CIVA1 cruise (February/March 1993), across the Southern Ocean, along a meridian section at 30°E, from South Africa (44°S) to Antarctica (70°S). The isotopic measurements show important variations between the subantarctic surface waters with low δ18O–high δ13C values and the antarctic surface waters with very low δ18O–low δ13C values. The surface distributions of δ13C values follow the major frontal oceanic structures; the vertical distribution shows the progressive upwelling from the subantarctic zone to the antarctic divergence of 13C-depleted CO2 derived from remineralization of organic matter. Along the Antarctic continental shelf, between 2500 and 4000 m, a core of water with δ18O values close to −0.1‰ is associated with a relative maximum in CFC-12 concentration, although this core is not detected by its temperature and salinity parameters. This water mass, which corresponds to recently formed deep water, may originate from the eastward extension of the Weddell gyre or from bottom waters coming from the East and formed near Prydz Bay.  相似文献   

12.
A nutrient–phytoplankton–zooplankton–detritus (1D-NPZD) ‘phytoplankton {Phyt} and Pseudocalanus elongatus {Zoop} dynamics in the spring bloom time in the Gda sk Gulf. The 1D-NPZD model consists of three coupled, partial second-order differential equations of the diffusion type for phytoplankton {Phyt}, zooplankton {Zoop}, nutrients {Nutr} and one ordinary first-order differential equation for benthic detritus pool {Detr}, together with initial and boundary conditions. In this model, the {Zoop} is presented by only one species of copepod (P. elongatus) and {Zoop} is composed of six cohorts of copepods with weights (Wi) and numbers (Zi); where . The calculations were made for 90 days (March, April, May) for two stations at Gda sk Gulf with a vertical space step of 0.5m and a time step of 900 s. The flow field and water temperature used as the inputs in the biological model 1D-NPZD were reproduced by the prognostic numerical simulation technique using hydrographic climatological data. The results of the numerical investigations described here were compared with the mean observed values of surface chlorophyll-a and depth integrated P. elongatus biomass for 10 years, 1980–1990. The slight differences between the calculated and mean observed values of surface chlorophyll-a and zooplankton biomass are ca. 10–60 mg C m−3 and ca. 5–23 mg C m−2, respectively, depending on the location of the hydrographic station. The 1D-NPZD model with a high-resolution zooplankton module for P. elongatus can be used to describe the temporal patterns for phytoplankton biomass and P. elongatus in the centre of the Gda sk Gulf.  相似文献   

13.
A new method to calculate the anthropogenic CO2 (ΔDICant) within the water column of the North Atlantic Ocean is presented. The method exploits the equilibrium chemistry of the carbonate system with reference to temperature, salinity and the partial pressure of atmospheric CO2 (pCO2,atm). ΔDICant is calculated with reference to the ventilation ages of water masses derived from tracer data and to the time history of pCO2,atm. The method is applied to data recorded during the WOCE program on the WHP A1/E transect in the North Atlantic Ocean, where we characterise six key water masses by their relationships of dissolved inorganic carbon (DIC) and apparent oxygen utilisation (AOU). The error in determining ΔDICant is reduced significantly by minimising the number of values referred to, especially by avoiding any use of remineralisation ratios of particulate organic matter. The distribution of ΔDICant shows highest values of up to 45 μmol kg−1 in the surface waters falling to 28–33 μmol kg−1 in the Irminger Sea west of the Mid-Atlantic Ridge. The eastern basin is imprinted by older water masses revealing decreasing values down to 10 μmol kg−1 ΔDICant in the Antarctic Bottom Water. These findings indicate the penetration of the whole water column of the North Atlantic Ocean by anthropogenic CO2.  相似文献   

14.
We tested the hypothesis that dissolved silicate (DSi) yields [kg km− 2 yr− 1] of 82 major watersheds of the Baltic Sea can be expressed as a function of the hydraulic load (HL) as a measure of water residence time and the total organic carbon (TOC) concentration, both variables potentially increasing the DSi yield. Most boreal rivers fitted a linear regression model using HL as an independent variable to explain the DSi yield. Rivers with high HL, i.e., shortest residence times, showed highest DSi yields up to 2300 kg km− 2 yr− 1. This is most likely caused by an excess supply of DSi, i.e., the geochemical sources prevail over biological sinks in these boreal watersheds. The DSi yield for regulated and unregulated larger rivers of the boreal watersheds constituting about 40% of the total water discharge and of the total DSi load to the Baltic Sea, respectively, can be expressed as: DSi yield = 190 + 49.5 HL[m yr− 1] + 0.346 TOC [µM] (R2 = 0.80). Since both HL and TOC concentrations have decreased after damming, the DSi yields have decreased significantly in the regulated boreal watersheds, for the River Luleälven we estimated more than 30%. The larger eutrophic watersheds draining cultivated landscape of the southern catchment of the Baltic Sea and representing about 50% of the annual water discharge to the Baltic Sea, deviated from this pattern and showed lower DSi yields between 60–580 kg km− 2 yr− 1. DSi yields showed saturation curve like relationship to HL and it appears that DSi is retained in the watersheds efficiently through biogenic silica (BSi) production and subsequent sedimentation along the entire river network. The relationship between HL and DSi yields for all larger cultivated watersheds was best fitted by a Freundlich isotherm (DSi = 115.7HL109; R2 = 0.73), because once lake and reservoir area exceeds 10% of the watershed area, minimum DSi yields were reached. To estimate an uperturbed DSi yield for the larger eutrophic southeastern watersheds is still difficult, since no unperturbed watersheds for comparison were available. However, a rough estimate indicate that the DSi flux from the cultivated watersheds to the Baltic Sea is nowadays only half the uperturbed flux. Overall, the riverine DSi loads to the Baltic Sea might have dropped with 30–40% during the last century.  相似文献   

15.
The species composition, abundance, and biomass of micro- (>15 μm) and nano- (<15 μm) phytoplankton were studied along the southern Black Sea during June–July 1996 and March–April and September 1998. A total of 150 species were identified, 50% of them being dinoflagellates. The average total phytoplankton abundance changed from 77×103 cells l−1 in spring to 110×103 cells l−1 in autumn and biomass from 250 μg l−1 in summer to 1370 μg l−1 in spring. Based on the extensive sampling grid from June–July 1996, phytoplankton seemed to have a rather homogeneous biomass distribution in the southern Black Sea. In all periods, the coccolithophorid Emiliania huxleyi was the most abundant species, its contribution to the total abundance ranging from 73% in autumn to 43% in spring. However, in terms of biomass, diatoms made up the bulk of phytoplankton in spring (97%, majority being Proboscia alata) and autumn (73%, majority being Pseudosolenia calcar-avis), and dinoflagellates in summer (74%, Gymnodinium sp.). There was a remarkable similarity in the dominant species between the western and eastern regions of the southern Black Sea, indicating transport of phytoplankton within the basin.  相似文献   

16.
The Baltic Sea is one of many aquatic ecosystems that show long-term declines in dissolved silicate (DSi) concentrations due to anthropogenic alteration of the biogeochemical Si cycle. Reductions in DSi in aquatic ecosystems have been coupled to hydrological regulation reducing inputs, but also with eutrophication, although the relative significance of both processes remains unknown for the observed reductions in DSi concentrations. Here we combine present and historical data on water column DSi concentrations, together with estimates of present river DSi loads to the Baltic, the load prior to damming together with estimates of the long-term accumulation of BSi in sediments. In addition, a model has been used to evaluate the past, present and future state of the biogeochemical Si cycle in the Baltic Sea. The present day DSi load to the Baltic Sea is 855 ktons y− 1. Hydrological regulation and eutrophication of inland waters can account for a reduction of 420 ktons y− 1 less riverine DSi entering the Baltic Sea today. Using published data on basin-wide accumulation rates we estimate that 1074 ktons y− 1 of biogenic silica (BSi) is accumulating in the sediments, which is 36% higher than earlier estimates from the literature (791 ktons y− 1). The difference is largely due to the high reported sedimentation rates in the Bothnian Sea and the Bothnian Bay. Using river DSi loads and estimated BSi accumulation, our model was not able to estimate water column DSi concentrations as burial estimates exceeded DSi inputs. The model was then used to estimate the BSi burial from measured DSi concentrations and DSi load. The model estimate for the total burial of BSi in all three basins was 620 ktons y− 1, 74% less than estimated from sedimentation rates and sediment BSi concentrations. The model predicted 20% less BSi accumulation in the Baltic Proper and 10% less in the Bothnian Bay than estimated, but with significantly less BSi accumulation in the Bothnian Sea by a factor of 3. The model suggests there is an overestimation of basin-wide sedimentation rates in the Bothnian Bay and the Bothnian Sea. In the Baltic Proper, modelling shows that historical DSi concentrations were 2.6 times higher at the turn of the last century (ca. 1900) than at present. Although the DSi decrease has leveled out and at present there are only restricted areas of the Baltic Sea with limiting DSi concentrations, further declines in DSi concentrations will lead to widespread DSi limitation of diatoms with severe implications for the food web.  相似文献   

17.
During 2004, 10 samplings were performed in order to measure dissolved methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) in the surface waters of Río San Pedro, a tidal creek in the salt marsh area of the Bay of Cádiz (SW Spain). The inner partvs of the creek is affected by the inputs coming from an intensive fish farm and the drainage of an extensive salt marsh area.Dissolved CH4, CO2 and N2O concentrations ranged from 11 to 88 nM, 36 to 108 μM and 14 to 50 nM, respectively. Surface waters were in all cases oversaturated with respect to the atmosphere, reaching values of up to 5000% for CH4, 1240% for CO2 and 840% for N2O. Dissolved CH4, CO2 and N2O showed a significant tidal and seasonal variability. Over a tidal cycle, concentrations were always highest during low tide, which points to the influence of the inputs from the fish farm effluent and the drainage of the adjacent salt marsh area, as well as in situ production within the system. Dissolved CH4, CO2 and N2O seasonal patterns were similar and showed maximum concentrations in summer conditions. Using four different parameterizations to calculate the gas transfer coefficients [Liss, P.S. and Merlivat, L., 1986. Air-sea exchange rates: introduction and synthesis. In P. Buat-Ménard (Ed.), The Role of Air-Sea Exchanges in Geochemical Cycling. Reidel, Dordrecht, The Netherlands, p. 113–127.; Clark, J.F., Schlosser, P., Simpson, H.J., Stute, M., Wanninkhof, R., and Ho, D.T., 1995. Relationship between gas transfer velocities and wind speeds in the tidal Hudson River determined by the dual tracer technique. In: B. Jähne and E. Monahan (Eds.), Air-Water Gas Transfer: AEON Verlag and Studio, Hanau, Germany, pp. 785–800.; Carini, S., Weston, N., Hopkinson, G., Tucker, J., Giblin, A. and Vallino, J., 1996. Gas exchanges rates in the Parker River estuary, Massachusetts. Biol. Bull., 191: 333–334.; Kremer, J.N., Reischauer, A. and D'Avanzo, C., 2003. Estuary-specific variation in the air-water gas exchange coefficient for oxygen. Estuaries, 26: 829–836.], the averaged air–water fluxes of CH4, CO2 and N2O from the creek to the atmosphere ranged between 34 and 150 μmol CH4 m− 2 day− 1, 73 and 177 mmol CO2 m− 2 day− 1 and 24 and 62 μmol N2O m−2 day−1, respectively.  相似文献   

18.
A tidal flat-sea grass bed ecosystem model was formulated and applied to Ise Bay to evaluate the purification capability of the shallow-water region where a new airport is expected to be built. The model results were in the range of the observed biomass for each state variable in the model. The purification capability of this shallow-water region is estimated from the model results. The inorganic nitrogen removal is estimated at 56 kg N day−1; the organic particulate nitrogen removal by suspension feeders is 95 kg N day−1; the organic nitrogen removal by harvest and fish predation is 25 kg N day−1, and the purification capability of this site is 51 kg N day−1. Potential loss of the sea grass bed by reclamation will reduce the removal ability of inorganic nitrogen as well as food sources for juvenile fishes.  相似文献   

19.
By developing a steady state diagnostic model for a stratified deep-water mass, one is able to quantify both the mass flows and apparent oxygen removal in the Baltic proper deep water. The model is based on continuity of the assumed conservative observable volume, salinity and temperature. Second degree polynomials are fitted to observed vertical profiles of temperature as well as oxygen concentration to give a functional correspondence with the used spatial variable salinity. These relations are used in the model that calculate the water flows, oxygen flows and oxygen removal during four periods between 1959 and 1997. The model forms a boundary value problem, which is solved with a finite difference scheme. The model seems to give reasonable estimates of the flows. The oxygen removal is mainly balanced by inflow of oxygen with incoming water. The oxygen consumption is 4–8 μl O2 l−1 day−1, which corresponds to a degradation of organic matter in the range 30–60 g C m−2 year−1.  相似文献   

20.
The Mississippi River currently delivers approximately 1.82 Tg N year−1 (1.3×1011 mol N year−1) to the northern Gulf of Mexico. This large input dominates the biological processes of the region. The “new” nitrogen from the river stimulates high levels of phytoplankton production which in turn support high rates of bacterial production, protozoan and metazoan grazing, and fisheries production. A portion of the particulate organic matter produced in the pelagic food web sinks out of the euphotic zone where it contributes to high rates of oxygen consumption in the bottom waters of the inner shelf, resulting in the development of an extensive zone of hypoxia each summer. In spite of the significance of this river system to the coastal ocean of the northern gulf, we do not have an adequate understanding of the inputs, processing and ultimate fates of river nitrogen. Here we review available literature on this important system and propose a conceptual model showing how biological processes evolve in the river plume between the point of discharge and the point where plume waters are fully diluted by mixing with oceanic water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号