首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper focuses on the mechanisms of combustion noise during the accelerating operation of multi-cylinder diesel engines using testing technology for the transient conditions of IC engines. Based on impact factors, such as the gas dynamic load and cylinder pressure oscillations, tests and analysis of the combustion noise during transient and steady-state conditions for different loads are made on four-cylinder naturally aspirated engines, turbocharged engines, EGR-introduced engines, and high pressure common rail engines. The laws of combustion noise difference for the same engine speed and load are researched during transient and steady-state conditions. It is found that during transient conditions, the maximum pressure rise rate and the high frequency oscillation amplitude of the cylinder pressure are all higher than those observed during steadystate conditions for the same engine speed and load. With their joint action, the combustion noise during transient conditions is greater than that during steady-state conditions. Turbocharging is useful in reducing the combustion noise during transient conditions. Turbocharging has a better effect on the control over the combustion noise during transient conditions with a constant engine speed and an increasing torque than in conditions with a constant torque and an increasing engine speed. One of the main reasons for different control effects on the combustion noise is that turbocharging causes different wall temperatures inside combustion chambers. The introduction of the appropriate EGR is helpful in the reduction of the combustion noise during transient conditions. The key to the control of combustion noise with EGR during transient conditions is whether a real-time adjustment to the EGR rate can be made to achieve the optimization of the EGR rates for different transient conditions. By means of analyzing the differences in the combustion noise between the transient and steady-state conditions for different pilot injection controls, we obtain a strategy for controlling the combustion noise during transient conditions with a pilot injection. Compared with the steady-state conditions, a larger pilot injection quantity and a longer interval between the main injection and pilot injection should be selected for transient conditions, and this is verified through tests.  相似文献   

2.
Compression ratio (CR) is a design parameter with highest influence on efficiency, emission and engine characteristics. In conventional internal combustion (IC) engines, the compression ratio is fixed and their performance is, therefore, a compromise between conflicting requirements. One fundamental problem is that drive units in the vehicles must successfully operate at variable speed and loads and in different ambient conditions. If a diesel engine has a fixed CR, a minimal value must be chosen that can achieve a reliable self-ignition when starting the engine in cold start conditions. In diesel engines, variable compression ratio (VCR) provides control of peak cylinder pressure, improves cold start ability and low load operation, enabling the multi-fuel capability, increase of fuel economy and reduction of emissions. By application of VCR and other mechanisms, the optimal regime fields are extended to the prime requirements: consumption, power, emission, noise, etc., and/or the possibility of the engine to operate with different fuels is extended. An experimental Diesel engine has been developed at the Faculty of Engineering, University of Kragujevac. The changes of CR are realized by changing the piston chamber diameter. Detailed engine tests were performed at the Laboratory for IC engines. Special attention has been given to decrease of fuel consumption and exhaust emissions. An optimal field of CR variation has been determined depending on the given objectives: minimal fuel consumption, minimal nitric oxides, and particulate matter emissions, etc.  相似文献   

3.
The HCCI (Homogeneous Charge Compression Ignition) engine is an internal combustion engine under development, which is capable of providing both high diesel-like efficiency and very low NOx and particulate emissions. However, several technical issues must be resolved before the HCCI engine is ready for widespread application. One issue is that its operating range is limited by an excessive pressure rise rate which is caused by the excessive heat release from its selfaccelerated combustion reaction and the resulting engine knock in high-load conditions. The purpose of this study was to evaluate the potential of thermal and fuel stratification for reducing the pressure rise rate in HCCI engines. The NOx and CO concentrations in the exhaust gas were also evaluated to confirm combustion completeness and NOx emissions. The computational work was conducted using a multi-zone code with detailed chemical kinetics, including the effects of thermal and fuel stratification on the onset of ignition and the rate of combustion. The engine was fueled with dimethyl ether (DME) which has a unique two-stage heat release, and methane which has a one-stage heat release.  相似文献   

4.
Exhaust nanoparticle emissions from internal combustion engines: A review   总被引:4,自引:0,他引:4  
This paper reviews the particle emissions formed during the combustion process in spark ignition and diesel engine. Proposed legislation in Europe and California will impose a particle number requirement for GDI (gasoline direct injection) vehicles and will introduce the Euro 6 and LEV-III emission standards. More careful optimization for reducing particulate emission on engine hardware, fuel system, and control strategy to reduce particulate emissions will be required during cold start and warm-up phases. Because The diesel combustion inherently produces significant amounts of PM as a result of incomplete combustion around individual fuel droplets in the combustion zone, much attention has been paid to reducing particle emissions through electronic engine control, high pressure injection systems, combustion chamber design, and exhaust after-treatment technologies. In this paper, recent research and development trends to reduce the particle emissions from internal combustion engines are summarized, with a focus on PMP activity in EU, CARB and SAE papers and including both state-of-the-art light-duty vehicles and heavy-duty engines.  相似文献   

5.
Recent studies on dual-fuel combustion in compression-ignition (CI) engines, also known as diesel engines, fall into two categories. In the first category are studies focused on the addition of small amounts of gaseous fuel to CI engines. In these studies, gaseous fuel is regarded as a secondary fuel and diesel fuel is regarded as the main fuel for combustion. The objectives of these studies typically involve reducing particulate matter (PM) emissions by using gaseous fuel as a partial substitution for diesel fuel. However, the addition of gaseous fuel raises the combustion temperature, which increases emissions of nitrogen oxides (NOx). In the second category are studies focused on reactivity-controlled compression-ignition (RCCI) combustion. RCCI combustion can be implemented by early diesel injection with a large amount of low-reactivity fuel such as gasoline or gaseous fuel. Although RCCI combustion promises lower NOx and PM emissions and higher thermal efficiency than conventional diesel combustion, it requires a higher intake pressure (usually more than 1.7 bars) to maintain a lean fuel mixture. Therefore, in this study, practical applications of dual-fuel combustion with a low air-fuel ratio (AFR), which implies a low intake pressure, were systemically evaluated using propane in a diesel engine. The characteristics of dualfuel combustion for high and low AFRs were first evaluated. The proportion of propane used for four different operating conditions was then increased to decrease emissions and to identify the optimal condition for dual-fuel combustion. Although the four operating conditions differ, the AFR was maintained at 20 (? approximately equal to 0.72) and the 50% mass fraction burned (MFB 50) was also fixed. The results show that dual-fuel combustion can reduce NOx and PM emissions in comparison to conventional diesel combustion.  相似文献   

6.
GZ机油添加剂对发动机环保性能影响的试验研究   总被引:2,自引:0,他引:2  
通过对各种汽油机、柴油机进行的有无GZ添加剂时的对比试验,证明了GZ机油添加剂能降低发动机的机械噪声,减少柴油机排气烟度和汽油机的怠速有害排放,改善发动机的环保性能。  相似文献   

7.
Vehicle emissions regulations are becoming increasingly severe and remain a principal issue for vehicle manufacturers. Since, WLTP (Worldwide harmonized Light vehicles Test Procedures) and RDE (real driving emission) regulations have been recently introduced, the engine operating conditions have been rapidly changed during the emission tests. Significantly more emissions are emitted during transient operation conditions compared to those at steady state operation conditions. For a diesel engine, combustion control is one of the most effective approaches to reduce engine exhaust emissions, particularly during the transient operation. The concern of this paper is about reducing emissions using a closed loop combustion control system which includes a EGR rate estimation model. The combustion control system calculates the angular position where 50 % of the injected fuel mass is burned (MFB50) using in-cylinder pressure for every cycle. In addition, the fuel injection timing is changed to make current MFB50 follow the target values. The EGR rate can be estimated by using trapped air mass and in-cylinder pressure when the intake valves are closed. When the EGR rate is different from the normal steady conditions, the target of MFB50 and the fuel injection timing are changed. The accuracy of the model is verified through engine tests, as well as the effect of combustion control. The peaks in NO level was decreased during transient conditions after adoption of the EGR model-based closed loop combustion control system.  相似文献   

8.
为满足非道路用柴油机的排放法规,从改善柴油机缸内混合气形成质量出发,提出了直喷式柴油机涡流室燃烧系统;设计了柴油机外部增压系统,进行了新型燃烧系统在外部增压下性能的实验研究。结果表明,外部增压能降低柴油机的油耗和排放;增压压力为0.15MPa时,柴油机油耗率最低。增压压力为0.18MPa时,使用4×0.36×140°喷油嘴在供油提前角为8°CA、90%负荷下,NOx排放量仅为常压下的25%。  相似文献   

9.
Extensive usage of automobiles has certain disadvantages and one of them is its negative effect on environment. Carbon dioxide (CO2), carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx), sulphur dioxide (SO2) and particulate matter (PM) come out as harmful products during incomplete combustion from internal combustion (IC) engines. As these substances affect human health, regulatory bodies impose increasingly stringent restrictions on the level of emissions coming out from IC engines. This trend suggests the urgent need for the investigation of all aspects relevant to emissions. It is required to modify existing engine technologies and to develop a better after-treatment system to achieve the upcoming emission norms. Diesel engines are generally preferred over gasoline engines due to their undisputed benefit of fuel economy and higher torque output. However, diesel engines produce higher emissions, particularly NOx and PM. Aftertreatment systems are costly and occupy more space, hence, in-cylinder solutions are preferred in reducing emissions. Exhaust gas recirculation (EGR) technology has been utilized previously to reduce NOx. Though it is quite successful for small engines, problem persists with large bore engines and with high rate of EGR. EGR helps in reducing NOx, but increases particulate emissions and fuel consumption. Many in-cylinder solutions such as lower compression ratios, modified injection characteristics, improved air intake system etc. are required along with EGR to accomplish the future emission norms. Modern combustion techniques such as low temperature combustion (LTC), homogeneous charge compression ignition (HCCI), premixed charge compression ignition (PCCI) etc. would be helpful for reducing the exhaust emissions and improving the engine performance. However, controlling of autoignition timing and achieving wider operating range are the major challenges with these techniques. A comprehensive review of diesel engine performance and emission characteristics is given in this paper.  相似文献   

10.
This paper is review of the characterization of exhaust particles from state-of-the-art internal combustion engines. We primarily focus on identifying the physical and chemical properties of nano-particles, i.e., the concentration, size distribution, and particulate matter (PM) morphology. Stringent emissions regulations of the Euro 6 and the LEV III require a substantial reduction in the PM emissions from vehicles, and improvements in human health effects. Advances in powertrains with sophisticated engine control strategies and engine after-treatment technologies have significantly improved PM emission levels, motivating the development of new particle measurement instruments and chemical analysis procedures. In this paper, recent research trends are reviewed for physical and chemical PM characterization methods for gasoline and diesel fueled engines under various vehicle certification cycles and real-world driving conditions. The effects of engine technologies, fuels, and engine lubricant oils on exhaust PM morphology and compositions are also discussed.  相似文献   

11.
Although premixed charge compression ignition (PCCI) combustion engines are praised for potentially high efficiency and clean exhaust, experimental engines built to date emit more hydrocarbons (HCs) and carbon monoxide (CO) than the conventional machines. These compounds are not only strictly controlled components of the exhaust gas of road vehicles but are also an energy loss indicator. The prime objective of this study was to investigate the major sources of the HCs formed in the combustion chamber of an experimental PCCI engine in order to suggest some effective technologies for HC reduction. In this study, to explore the dominant sources of HC emissions in both operation modes, a single cylinder engine was prepared such that it could operate using either conventional diesel combustion or PCCI combustion. Specifically, the contributions of the top-ring crevice volume in the combustion chamber and the bulk quenching of the lean mixture were investigated. To understand the influence of the shape and magnitude of the crevice on HC emissions, the engine was operated with 12 specially prepared pistons with different top-ring crevices installed one after another. The engine emitted proportionally more HCs as the depth of the crevice increased as long as the width remained narrower than the prevailing quench distance. The top-ring-crevice-originated exhaust HCs comprised approximately 31% of the total HC emissions in the baseline condition. In a series of tests to estimate the effects of bulk quench on exhaust HC emissions, intake air was heated from 300K to 400K in steps of 25K. With the intake air heated, HC and CO emissions decreased with a gradually diminishing rate to zero at 375K. In conclusion, the most dominant sources of HC emissions in PCCI engines were the crevice volumes in the combustion chamber and the bulk quenching of the lean mixtures. The key methods for reducing HC emissions in PCCI engines are minimizing crevice volume in the combustion chamber and maximizing intake air temperature allowed based on the permissible NOx level.  相似文献   

12.
Compression ignition of homogeneous charges in internal combustion (IC) engines is expected to offer high efficiency of DI diesel engines without high levels of NOx and particulate emissions. This study is intended to find ways of extending the rich limit of HCCI operation, one of the problems yet to be overcome. Exhaust emissions characteristics are also explored through analyses of the combustion products. DME fuel, either mixed with air before induction or directly injected into the combustion chamber of a rapid compression and expansion machine, is compressed to ignite under various conditions of compression ratio, equivalence ratio, and injection timing. The characteristics of the resulting combustion and exhaust emissions are discussed in terms of the rate of heat release computed from the measured pressure, and the concentrations of THC, CO, and NOx are measured by FT-IR and CLD. The experimental data to date show that operation without knock is possible with mixtures of higher equivalence ratio when DME is directly injected rather than when it is inducted in the form of a perfectly homogeneous fuel-air mixture. Although fuel injected early in the compression stroke promotes homogeneity of the DME-air mixture in the cylinder, it causes the mixture to ignite too early to secure good thermal efficiency and knock-free operation at high loads. Low temperature reactions occur at about 660K regardless of the fueling methods, fuel injection timing and equivalence ratio. The main components of hydrocarbon emissions turned out to be unburned fuel (DME), formaldehyde and methane.  相似文献   

13.
缸内直喷醇类燃料发动机的燃烧与排放特性   总被引:2,自引:0,他引:2  
根据所测的示功图和排放,分析了一台采用火花点火、缸内直喷周向分层燃烧系统的发动机在燃用甲醇和乙醇时的性能和燃烧特性。研究表明,醇类燃料发动机的燃烧由预混燃烧与扩散燃烧组成,具有非常快的燃烧速率,而且非常稳定,ATDC(3°CA~6°CA)就燃烧完50%燃料,循环变动小于6%。与燃用乙醇相比,燃用甲醇时滞燃期较短,燃烧速率较快。由于采用分层燃烧,醇类燃料发动机具有与直喷柴油机相当的热效率,在负荷特性上,燃用醇类燃料时的NOx排放仅为柴油机的10%~40%,且能实现无烟燃烧,CO排放的增加低于1%,HC排放高于柴油机。  相似文献   

14.
The demand for reduced pollutant emissions has motivated various technological advances in passenger car diesel engines. This paper presents a study comparing two fuel injection systems and analyzing their combustion noise and pollutant emissions. The abilities of different injection strategies to meet strict regulations were evaluated. The difficult task of maintaining a constant specific fuel consumption while trying to reduce pollutant emissions was the aim of this study. The engine being tested was a 0.287-liter single-cylinder engine equipped with a common-rail injection system. A solenoid and a piezoelectric injector were tested in the engine. The engine was operated under low load conditions using two injection events, high EGR rates, no swirl, three injection pressures and eight different dwell times. Four injector nozzles with approximately the same fuel injection rate were tested using the solenoid injection system (10 and 12 orifice configuration) and piezoelectric system (6 and 12 orifice design). The injection system had a significant influence on pollutant emissions and combustion noise. The piezoelectric injector presented the best characteristics for future studies since it allows for shorter injection durations and greater precision, which means smaller fuel mass deliveries with faster responses.  相似文献   

15.
近年来,随着人们对环境保护的日趋重视,世界各国对内燃机废气排放的要求变得越来越严格,轻型柴油车开始实施国Iv标准。目前由于机内排放控制并不能完全起到净化效果,因此对已排出燃烧室但尚未排到大气中的废气进行处理,采取机外控制技术显得很有必要。PM和NOx是柴油机主要排放污染物,如何同时降低这两种尾气组成,达到国Ⅳ排放水平,是当今世界柴油机技术的难点和研究热点。本文介绍目前国内满足柴油机国IV排放标准的SCR和EGRDPF/DOC两种主流技术路线。通过对比分析两种系统的原理和优缺点得出适合国内发展的路线,并浅谈未来柴油机排放控制的发展方向。  相似文献   

16.
通过柴油机工作过程测量分析系统对一台直喷式车用柴油机加速时的喷油和燃烧过程进行了试验研究和计算,并计算了其加速过程中的总声压级;利用油滴蒸发准维燃烧模型对柴油机加速过程NOx 排放进行了模拟计算。研究结果表明,柴油机喷油和燃烧特性参数的综合效果对NOx排放值产生影响;柴油机加速时的燃烧噪声大于标定工况,加速工况时的NOx 排放浓度值变化较大,有时大于标定工况。  相似文献   

17.
汽车发动机在节能和排放领域的新进展   总被引:4,自引:0,他引:4  
回顾 内燃机的发展历程,并对为降低内燃机排放而采取各种动力的汽车进行分析,指出燃油汽车仍具有很大的发展前景,论述了汽油机从化油器式直至均燃直喷式的发展历程,并阐述了它们各自的优缺点;指出了柴油机为达到提高功率密度、降低燃油消耗及改善环境的目的应采取的措施。  相似文献   

18.
The prospect of using turpentine oil as an additive for Jatropha biodiesel and using it as an alternative fuel for diesel in CI engines has been experimented in this work. Tests were carried out in a single cylinder, air cooled, constant speed, direct injection diesel engine. The results display that the performance of Jatropha-Mineral Turpentine (JMT) and Jatropha- Wood Turpentine (JWT) blends were found close to diesel, emission features were enhanced and combustion parameters were noticed to be comparable with diesel. Brake thermal efficiency of JMT20 blend found closer to diesel at 75 % load. BSFC increases for JMT and JWT blends at part load and maintains at full load. CO, HC and Smoke emissions were reduced with JMT and JWT blends at 75 % load. NOx emissions were on the raise. Furthermore, JMT and JWT blends offered comparable performance and combustion parameters, reduced emissions and both can substitute standard diesel in CI engines.  相似文献   

19.
Emission regulations are becoming more stringent and remain a principal issue for vehicle manufacturers. Many engine subsystems and control technologies have been introduced to meet the demands of these regulations. For diesel engines, combustion control is one of the most effective approaches for reducing not only engine exhaust emissions but also cylinder-by-cylinder variation. However, the high cost of pressure sensors and the complex engine head design for additional equipment present difficulties for manufacturers. In this paper, cylinder pressure-based engine control logic is introduced for a multi-cylinder high speed direct injection (HSDI) diesel engine. The time for 50% of the mass fraction to be burned (MFB50) and the IMEP are valuable for determining the combustion status. These two in-cylinder quantities are measured and applied to the engine control logic. Fuel injection timing is controlled to adjust the operating MFB50 to the target MFB50 using PID control logic, and the fuel injection quantity is controlled to adjust the measured IMEP to the desired IMEP. The control logic is demonstrated at steady state and during transient conditions and is applied to an NEDC mode test.  相似文献   

20.
燃料富氧重整和双燃料燃烧模式是改善燃烧过程和降低颗粒物排放的重要方法.在一台四缸增压中冷的高压共轨柴油机上,采用进气道喷射甲醇、缸内喷射P50(50%体积比例柴油与50%体积比例PODE)的双燃料模式,研究掺混比对P50/甲醇双燃料发动机燃烧与排放特性的影响.研究结果表明:相比于纯柴油模式,P50及P50/甲醇双燃料燃...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号