首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一城市快速路预应力混凝土连续箱梁桥在反弯点附近,腹板竖向开裂,裂缝最大宽度达0.7 mm。对该桥进行了外观检查、无损检测、结构检算及静载试验综合评估,并结合评估结果对病害成因进行了分析。分析结果表明:腹板开裂是由于设计中反弯点处预应力钢筋布置不合理,在反弯点处重心偏高且较集中,造成反弯点附近抗弯、抗裂强度不够。此外,由于桥梁施工工艺欠佳或养护不当造成梁体在反弯点处收缩开裂,并在后期进一步发展。  相似文献   

2.
广州一座高架桥预应力混凝土简支T梁跨中区域腹板上部近承托处存在纵向裂缝,且局部开裂伴有碎边现象。本文建立了有限元模型对腹板开裂病害原因进行分析,并提出了增大腹板截面、增设预应力碳板和跨中横隔梁的加固设计方案。结果表明:原桥在不考虑桥面铺装参与结构受力的条件下,车辆荷载局部轮载将会使得T梁跨中区域腹板顶部出现较大的竖向拉应力,与纵向裂缝的位置较为一致;加固后,T梁承载能力富余度增加,梁体下缘拉应力得到明显改善;同时T梁腹板局部承载能力及裂缝宽度均满足规范要求。  相似文献   

3.
针对出现腹板斜裂缝的重载铁路32 m预应力混凝土简支T梁(图号:专桥2040),分别假定4种不同斜向开裂状态并建立实体有限元模型,对运营荷载作用下在距梁端4~8m的(斜裂缝纵向分布区域)腹板混凝土主拉应力、预应力钢束和箍筋应力,以及跨中挠度进行计算分析.结果表明:腹板斜裂缝对梁体受力影响显著,与完好梁体相比,预设斜裂缝...  相似文献   

4.
为了研究活性粉末混凝土在铁路箱梁中的结构性能和破坏状态,试验设计了1孔斜腹板薄壁活性粉末混凝土简支箱梁模型。该箱梁模型采用节段拼装制梁成孔,短线法预制,采用胶接缝。本试验完成了跨度24 m活性粉末混凝土简支箱梁的预制和拼装施工,研发了适应活性粉末混凝土箱形梁预制的钢模板系统,探索了合理的拆模、搅拌、浇筑、养护、预应力张拉工艺。通过活性粉末混凝土简支箱梁静载试验,对设计参数的选取和计算方法进行了验证。试验结果表明:梁体刚度和抗裂安全系数满足设计要求;跨中截面和1/4跨截面中性轴高度实测值均与设计值基本一致;胶接缝的抗拉弹性模量满足设计要求。  相似文献   

5.
预应力混凝土连续箱梁桥在我国运用广泛,箱梁的内部环形裂缝已成为其突出的病害。为了研究裂缝产生的原因及相应的加固措施,以某铁路预应力混凝土连续箱梁桥为例,采用动应变测试裂缝处截面中性轴的位置,并对箱梁内部环形裂缝进行灌胶加固。通过比较加固前后箱梁的动应变响应数据,研究环形裂缝灌胶加固的性能和效果。结果表明:施工过程中接缝处理不当是造成合龙段处箱梁内部顶底板环形裂缝的主要原因。裂缝截面位置的实测中性轴比设计的理论中性轴高出了14 cm,截面刚度明显降低。对裂缝进行灌胶加固后,实测中性轴下移了5 cm,该位置满足设计要求,有效提高了裂缝处截面的刚度。对箱梁内部裂缝进行处理时,应依据裂缝产生的原因进行多种加固方案的比选,以选择兼具加固效果和经济效益的方案。  相似文献   

6.
开裂预应力混凝土梁的检测、评估和加固   总被引:2,自引:0,他引:2  
应用钢筋混凝土基本理论,分析预应力混凝土结构开裂的力学成因。以3座典型有裂缝预应力混凝土桥梁为例,论述检测、评估和加固方法。从梁体跨中挠度和支点转角的大小及影响线、结构变形的协同性判断裂缝对结构整体受力状态的影响。从开裂截面的应变分布、实测应变与加载弯矩关系、应变值大小以及截面中性轴的稳定性综合判断开裂截面的工作状态和承载能力。当评定结果为梁体的预应力度满足要求时,对主要起受压作用的混凝土开裂区采用高标号钢筋混凝土在梁肋两侧增加断面的方法予以加固,对其他混凝土开裂区采用灌缝处理,对受拉区,可在局部加贴钢板加固。当评定结果为梁体的预应力度严重不足时,先对裂缝进行灌缝处理,然后采用在受拉区表面大面积粘贴10 mm钢板加固。  相似文献   

7.
铁路先简支后连续梁疲劳性能与抗裂性能试验研究   总被引:1,自引:1,他引:0  
研究带有湿接缝的先简支后连续梁桥结构的疲劳性能和抗裂性能,对3条模型梁的疲劳试验和抗裂试验进行了研究。介绍了铁路预应力混凝土先简支后连续梁模型梁的设计和试验方法,根据3条模型梁疲劳试验结果,分析了在正常使用状态下结构刚度、各典型截面特别是湿接缝段混凝土、普通钢筋和预应力钢筋应变随疲劳加栽次数的变化规律,指出重复加裁明显降低了梁体刚度,并使梁体混凝土、普通钢筋和预应力钢筋应变增大。根据开裂试验结果,分析了重复加载对各关键断面特别是湿接缝断面抗裂性的影响,得出重复荷载降低了湿接缝的抗裂强度,而对跨中截面和中支点截面抗裂强度无明显影响。给出了关于铁路预应力混凝土先简支后连续梁疲劳性能和湿接缝抗裂性的一些结论和建议。  相似文献   

8.
研究目的:通过对连续箱梁桥控制截面和典型位置的应力和变形观测,得到桥梁实际应力分布和变形情况,通过测试桥梁的实际受力情况,可以评估和鉴定桥梁的实际承载能力,为工程竣工验收提供实测依据.研究结论:通过对预应力混凝土连续箱梁桥的静动荷载试验,得到了桥结构的实际应力、变形及频率等参数.试验结果表明,对该桥的理论分析和设计计算方法可行,能控制和保证施工质量,使桥梁刚度和承载能力满足设计和规范要求.  相似文献   

9.
为了研究波形钢腹板组合箱梁的扭转性能,分别对2根单箱单室截面和单箱双室截面波形钢腹板预应力混凝土组合箱梁在纯扭作用下的受力性能进行了全过程加载试验研究,测试了试验梁的扭转角、截面应变和裂缝随荷载发展的规律,获得了波形钢腹板组合梁纯扭破坏现象,并根据试验结果给出了开裂扭矩和极限扭矩的计算方法.结果表明,波形钢腹板组合箱梁...  相似文献   

10.
为分析开裂预应力混凝土箱形桥梁结构开裂后的残余承载力,以裂缝统计特征参数为基础,用单元退化方式模拟正裂缝,用裂缝间的单向受压杆模拟裂缝间的承压效应,采用空间梁单元和三维杆单元分别模拟梁和预应力筋,以单元降温的方式模拟预加力的效应,形成空间刚架模型模拟斜裂缝。基于开裂后混凝土及预应力钢筋的基本假定,建立开裂后结构的计算方法。按照相似高度、开裂区域截面折减、折减自重补偿的原则将相似裂缝进行合并处理,得到裂缝区域的阶梯型折减刚度模型,提出承载能力折减系数计算方法以体现开裂后结构刚度的变化。经实桥算例验证,本文方法可正确判断静定及超静定预应力混凝土结构开裂后承载力的变化程度。  相似文献   

11.
我国客运专线各种标准梁型在实际应用之初均进行了实体箱梁的试验研究工作,以掌握结构的实际受力性能,对于保证箱梁的正常、安全使用起到了重要作用。以新建成灌铁路跨度32m预应力混凝土简支箱梁为研究对象,对梁端变截面处腹板在预施应力条件下的受力状态进行了计算分析和测试,对跨中等截面段腹板在模拟运梁车运梁通过工况下的受力性能进行了计算分析和静载试验。根据箱梁腹板受力性能试验研究结果,对箱梁的截面构造和预应力束布置进行了设计优化、完善,改善了腹板的竖向受力性能,静载试验结果表明在运梁、运营工况下箱梁能满足正常使用要求。  相似文献   

12.
900t大型预制箱梁早期张拉抗裂性能研究   总被引:1,自引:0,他引:1  
运用数值方法和现场测试,研究900 t大型预制预应力混凝土双线简支箱梁在预、初张拉过程中的应力、变形状态及抗裂性能。采用通用有限元分析软件MIDAS/Civil,按弹性支撑计算模型,对预、初张拉阶段箱梁的应力和变形状态进行模拟计算,分析基础刚度、箱梁翼板有效宽度及混凝土弹性模量关键参数对计算结果的影响。在箱梁跨中截面内埋设钢弦式应变计,在梁顶面布置观测标,监测预、初张拉阶段的混凝土应变和梁体变形。研究结果表明,900 t大型预应力混凝土双线简支箱梁跨中截面在预、初张拉阶段未出现拉应力,初张拉后箱梁明显上拱。采用只受压弹性连接模拟箱梁与台座之间的接触关系进行箱梁受力状态分析,能够模拟出梁体在预应力束逐批张拉下梁体逐渐起拱以及梁体自重逐渐参与作用的实际情况,梁体上拱变形的计算结果与实测结果符合较好。  相似文献   

13.
在日常维护管理过程中,发现32 m预应力混凝土简支T梁在开通运营1~2年内裂缝病害量多、面广、发展较快,裂缝主要分布于梁体腹板及下翼缘处,裂缝走向主要沿预应力管道方向。针对此病害,通过结构基本状态检测、无损检测等工作,掌握了裂缝的分布、形态和宽度,钢筋及钢绞线锈蚀情况等;通过桥梁运营性能检验,分析桥梁结构竖向和横向刚度是否满足《铁路桥梁检定规范》(铁运函[2004]120号)中的要求。封闭涂装处理后经过10年的运营,部分裂缝重新开裂,但复测结果显示,梁体混凝土碳化深度未超过钢筋保护层厚度,钢筋锈蚀电位及混凝土电阻率测试显示钢筋锈蚀较慢,不存在大规模锈蚀的可能;上部结构横向振幅及横向加速度均满足《铁路桥梁检定规范》的要求。  相似文献   

14.
研究目的:新开河特大桥处在天津市区范围内,全长5 330.37 m,除了跨越一些大的立交采用较大跨度的预应力混凝土连续梁之外,其他大部分桥跨则采用梁跨为20 m、24 m或32 m的预应力混凝土简支箱梁。其特殊的地理环境要求在结构形式上既要满足受力要求又要实用、美观,箱梁腹板斜率的选择是实现结构美观的重要因素之一。研究方法:以京津城际轨道交通新开河特大桥32 m简支箱梁为例,对箱梁腹板不同斜率的截面的受力情况进行计算、对比和分析。研究结果:斜腹板箱梁截面内顶板承受拉力和弯矩,腹板斜率越大,产生的拉力就越大。结合配筋计算,京津城际轨道交通的新开河特大桥的简支箱梁采用了腹板斜率3∶1的横截面结构。研究结论:预应力混凝土箱型梁腹板的斜率选择,既要考虑它与整个桥梁的和谐统一,又要充分考虑与所处环境的协调,更要对所选择的截面进行详实计算和分析,从而找出既满足受力要求又实用、美观的合理截面。  相似文献   

15.
混凝土空心板梁底板纵向裂缝对结构受力的影响分析   总被引:1,自引:1,他引:0  
结合预应力混凝土简支空心板梁底板纵向开裂后桥梁静载试验的结果,采用空间实体有限元法和等代刚度法就纵向裂缝出现对梁体刚度的削弱进行了讨论,进而就其对主梁荷载横向分布的影响进行了分析.  相似文献   

16.
研究目的:波形钢腹板组合箱梁在受力特点上因具有显著优势,近年来得以迅速发展并在铁路上已经得到应用。本文依托波形钢腹板连续组合箱梁的模型试验,对波形钢腹板连续组合箱梁全过程试验下的弯剪受力性能和破坏机理进行深入研究,从而明确波形钢腹板连续组合箱梁的破坏机制和失效过程。研究结论:(1)波形钢腹板连续组合箱梁正截面弯曲破坏过程可分为弹性加载阶段、中跨跨中截面开裂阶段、中支座截面开裂阶段和中跨跨中截面钢筋屈服阶段四个阶段;(2)波形钢腹板连续组合箱梁剪力主要由波形钢腹板承担,梁体截面开裂和破坏对梁体的抗剪承载力影响较小;(3)试验梁体外预应力增量与中跨跨中截面挠度基本呈线性相关;(4)本研究成果可为波形钢腹板连续组合箱梁的工程运用提供技术参考。  相似文献   

17.
在钢-混凝土双面组合梁(DCB)的基础上,提出了钢-混凝土组合与叠合梁结构(CLB)。给出了CLB截面弯曲刚度、极限弯矩的简化计算方法。为进一步研究CLB结构的受力性能,设计了二根简支CLB和一根简支DCB模型,进行了反向加载试验,得到了完整的荷载-挠度曲线、典型截面正应变分布、钢筋混凝土顶板开裂情况和钢梁与混凝土顶板间叠合界面相对滑移曲线。研究结果表明:CLB结构的塑性极限承载能力低于DCB结构;正常使用阶段,二者的承载能力相当,但CLB结构的抗裂性能却远优于DCB结构:前者混凝土顶板开裂呈弯曲型,裂缝宽度窄,而后者混凝土顶板开裂基本呈轴拉型,裂缝宽度较大。CLB结构更适用于连续组合梁桥的负弯矩区。  相似文献   

18.
预应力混凝土先简支后连续梁静、动力试验研究   总被引:2,自引:1,他引:1  
简要介绍预应力混凝土先简支后连续梁1:5模型设计、试验方法。根据弹性试验、开裂试验和破坏试验结果,研究分析该类结构的工艺特点、正常使用荷载作用下结构受力变形特征、结构特别是湿接缝截面的抗裂性、开裂区域裂缝发展分布规律以及结构极限承载力。根据开裂试验中应变测试结果,分析计算各典型截面抗裂安全系数,初步研究湿接缝段对结构的影响。在对模型梁体系转换前、后和先简支后连续梁破坏前、后动力测试与理论分析的基础上,校核模型梁的刚度、制作精度,验证模型梁、原型梁固有频率之间的关系,最后初步探讨了先简支后连续梁的动力性能。  相似文献   

19.
研究目的:针对某大跨预应力混凝土连续刚构桥在施工过程中腹板开裂的问题,对该桥主桥腹板所有裂缝进行全面检查,完成可查裂缝宽度、深度的检测。通过归纳总结裂缝的分布特征,利用有限元分析软件ANSYS建立开裂混凝土节段的空间模型,结合腹板开裂相关理论,分析腹板开裂的原因,探究裂缝分布规律。研究结论:(1)腹板两侧的裂缝基本对称于箱梁纵轴线,较多出现在腹板内侧,与腹板下弯束的布置位置、方向符合程度较高;(2)有限元分析结果表明,腹板下弯束及其锚固点周围的部分区域主拉应力超过混凝土抗拉强度设计值,且该区域基本沿预应力束分布;(3)该腹板裂缝属于主拉应力裂缝,过大拉应力主要来源于预应力束径向力、箱梁空间效应产生的次拉力以及锚固应力扰动区的横向拉应力;(4)设计者应重视箱梁横向应力和空间效应,必要时对复杂受力区域进行精细的局部分析,以保证主拉应力不超过限值;(5)本研究成果可为预应力混凝土连续刚构桥的相关设计及施工提供参考借鉴。  相似文献   

20.
针对某桥预应力混凝土连续梁出现的开裂情况,从设计、施工和运营等环节进行裂缝成因分析,并按照开裂后的截面对结构的安全可靠性进行分析评价。分析表明,梁体结构设计合理;运营阶段超载是导致开裂的主要原因;开裂截面检算表明梁体仍满足规范规定的B类部分预应力结构的要求;限制超载,并对裂缝进行封堵后,梁体结构可满足正常运营要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号