首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
In this paper, in order to save time and cost for the fatigue design and to develop the optimum approaches for accelerated life prediction of the fillet gas welded joints, the (Δσ)R − Nf relationship was obtained from actual fatigue test data, including welding residual stress. Based on these results, the (Δσa)R − (Nf)ALP relationship derived from the method of statistical probability analysis was compared with the actual fatigue test data. From the result, the optimum statistical distribution for the accelerated life prediction was analyzed to be the lognormal distribution for the fillet-type, gas-welded joint. The mean accuracy of the accelerated life prediction was assessed to be 85∼95% of the actual test life at the 95% reliability level and ±15% standard deviation. Therefore, it is expected that the accelerated life prediction will provide a useful method for determining the criterion for fatigue design and for predicting a specific target life.  相似文献   

2.
This paper presents a method to assess of fatigue strength for resistance spot welded joints, which incorporates welding residual stress effects. To achieve this, first, a non-linear finite element analysis (FEA) was performed to simulate the spot-welding process. To validate the FEA results, the numerically calculated welding residual stresses of spot welds were then compared with experimental results measured by X-ray diffraction method. The residual stress distributions showed good agreement between calculations and experiments. To evaluate the effects of welding residual stress on the fatigue design criterion of resistance spot welded joints subjected to cross-tension load, the stress amplitude (σa-res) taking into account welding residual stress at a spot weld was proposed based on a modified Goodman equation incorporating the residual stress effect. Using the stress amplitude σa-res at the nugget edge of a spot weld, the ΔP ? Nf relations obtained as the fatigue test results for spot welded joints were systematically rearranged to the σa-res ? Nf relation. It was found that the proposed stress amplitude (σa-res) provides more reasonable and accurate fatigue design criterion of spot welded joints subjected to cross-tension load.  相似文献   

3.
焊接残余应力在焊接构件中普遍存在,直接影响车架结构的承载能力、降低焊接接头及整个车架构件的疲劳强度,在遇到外力作用时会产生疲劳断裂或脆性断裂而引发事故。只有从结构设计、工艺制造、焊后处理等阶段进行控制和消除,才能保证使用要求,提高焊接构件的强度,延长工作寿命。  相似文献   

4.
初始缺陷在钢桥面板工厂焊接加工时难以避免,是影响钢桥面疲劳性能的重要内在因素。为研究初始缺陷角度对纵肋顶板焊缝疲劳开裂的影响,建立了包含典型初始缺陷工况条件下的有限元模型,分析得到了裂纹前缘应力强度因子。计算结果表明:竖向初始缺陷状态下的裂纹扩展能力最强;初始缺陷从竖向偏转至45°过程中,偏转角越大,张开型应力强度因子越小,滑开型和撕开型应力强度因子越大。断裂参数数值计算方法与分析结果可为相关钢桥面构造抗疲劳分析提供参考。  相似文献   

5.
斜拉桥钢锚拉板区域焊接应力消除试验研究   总被引:3,自引:2,他引:1  
对重庆江津观音岩大桥索梁锚固区域部分进行了3个足尺比例试件的焊接残余应力测试,并对其焊缝进行了超声波冲击试验,以研究超声波冲击对钢锚拉板区域各焊缝应力的影响情况。测试和试验研究结果表明,钢锚拉板区域各焊缝存在着相当大的焊接残余应力,特别是在平行于焊缝长度方向的应力,不少测点已接近屈服强度。通过采用超声波冲击工艺,大幅度地减小和消除了该区域的焊缝残余拉应力,3个试验试件的各焊缝在平行和垂直于焊缝长度方向的应力平均下降50%以上,最大的下降96.5%,不少测点应力已由拉应力变为了压应力,有效地改善了应力的状态,从而使结构的受力更合理,应力分布趋于均匀。超声波冲击可以作为一种解决斜拉桥桥钢锚拉板区域焊接应力过大问题的有效的方法,对提高接头的疲劳寿命有明显作用。  相似文献   

6.
Fast and predictive simulation tools are prerequisites for pursuing simulation based engine control development. A particularly attractive tradeoff between speed and fidelity is achieved with a co-simulation approach that marries a commercial gas dynamic code WAVE™ with an in-house quasi-dimensional combustion model. Gas dynamics are critical for predicting the effect of wave action in intake and exhaust systems, while the quasi-D turbulent flame entrainment model provides sensitivity to variations of composition and turbulence in the cylinder. This paper proposes a calibration procedure for such a tool that maximizes its range of validity and therefore achieves a fully predictive combustion model for the analysis of a high degree of freedom (HDOF) engines. Inclusion of a charge motion control device in the intake runner presented a particular challenge, since anything altering the flow upstream of the intake valve remains “invisible” to the zero-D turbulence model applied to the cylinder control volume. The solution is based on the use of turbulence multiplier and scheduling of its value. Consequently, proposed calibration procedure considers two scalar variables (dissipation constant C β and turbulence multiplier C M ), and the refinements of flame front area maps to capture details of the spark-plug design, i.e. the actual distance between the spark and the surface of the cylinder head. The procedure is demonstrated using an SI engine system with dual-independent cam phasing and charge motion control valves (CMCV) in the intake runner. A limited number of iterations led to convergence, thanks to a small number of adjustable constants. After calibrating constants at the reference operating point, the predictions are validated for a range of engine speeds, loads and residual fractions.  相似文献   

7.
A robust H preview control is investigated for an active suspension system with look-ahead sensors. The uncertain system is described by a state-space model with linear nominal parts and additional nonlinear time-varying norm-bounded uncertainties. Proof of robust stability and a feedback-type robust H preview controller are derived by augmenting the dynamics of the original system and previewed road input. As, however, the augmented previewed road input gives the system a much larger dimension than the original system, much more computation time is required for solving of Riccati equations. To resolve this problem, a decomposed robust H preview controller is proposed. Robust stability and performance variations for system uncertainties are shown using a numerical example of a quarter-car model.  相似文献   

8.
The maximum principal stresses, von Mises effective stresses and principal facet stresses at the time of creep rupture were compared in uniaxial, biaxial, and triaxial stress states for AZ31 magnesium alloy. The creep rupture of this alloy was experimentally controlled by cavitation, which was the result of a low damage tolerance, λ. Creep deformation could be correlated with the von Mises effective stress parameter. The failure-mechanism control parameter governing the stress state coincided with the experimental results of the rupture of the materials under multiaxial stress states. Finally, the theoretical prediction based on constrained cavity growth and continuous nucleation agreed with the experimental rupture data to within a factor of three.  相似文献   

9.
As a crash energy absorber, a tube-type crash element (expansion tube) dissipates kinetic energy through the internal deformation energy of the tube and through frictional energy. In this paper, the effects of the variation of punch angles on the energy-absorbing characteristics of expansion tubes were studied by quasi-static tests using three punch angles (15°, 30°, and 45°). A finite element analysis of the tube expanding process (m = τ max /K) was performed using a shear friction model to confirm the variation of the shear friction factor with respect to punch angles using the inverse method. Additional analyses were performed using angles of 20°, 25°, 35°, and 40° to study the effect of the punch angles on the internal deformation energy, frictional energy, and expansion ratio of the tubes. The results of the experiment and finite element analysis showed that the shear friction factor was inversely proportional to the punch angles, and a specific punch angle existed at which the absorbed energy and expansion ratio remained constant.  相似文献   

10.
Understanding the mechanism of carbon oxidation is important for the successful modeling of diesel particulate filter regeneration. Characteristics of soot oxidation were investigated with carbon black (Printex-U). A flow reactor system that could simulate the condition of a diesel particulate filter and diesel exhaust gas was designed. Kinetic constants were derived and the reaction mechanisms were proposed using the experimental results and a simple reaction scheme, which approximated the overall oxidation process in TPO as well as CTO. From the experiments, the apparent activation energy for carbon oxidation with NO2-O2-H2O was determined to be 40±2 kJ/mol, with the first order of carbon in the range of 10∼90% oxidation and a temperature range of 250∼500°C. This value was exceedingly lower than the activation energy of NO2-O2 oxidation, which was 60±3 kJ/mol. When NO2 exists with O2 and H2O, the reaction rate increases in proportion to NO2. It increases nonlinearly with O2 or H2O concentration when the other two oxidants are fixed.  相似文献   

11.
Experiments were conducted to investigate the influence of certain parameters that affect the impact response of the motorcycle front wheel-tire assembly under various impact conditions. Impact tests were conducted according to 2 ν 5 − 1 fractional factorial design using a pendulum impact test apparatus with impact speed, impact mass, tire inflation pressure level, striker geometry, and impact location as design factors. Significant factors influencing the response of the wheel-tire assembly were identified. Coefficients for each factor were also determined, and empirical models were then developed for each response. An analysis indicates that the developed models fit well within the experimental ranges of the respective factors. However, for several interaction effects, the models become unrealistic, whereby they give certain deformation values when approaching zero impact mass and/or zero impact velocity. This is not consistent with the mechanics of the physical world, as there should not be any significant deformation when delivered impact energy is small enough. Efforts have been made in developing better models to resolve the inconsistency and to include a wider range, especially considering the case of the lower limit of experimental factors, which are an impact mass of 51.18 kg and/or an impact velocity of 3 m s−1 (10.8 km/h) down to zero. The minimum amount of impact energy required to produce the onset of observable deformation on the wheel was incorporated in the development of new models. Finally, the present models have been developed not only to cover the lower regions but also to range up to the upper limits of the factors, which are an impact mass of 101.33 kg and an impact velocity of 6 m s−1 (21.6 km/h).  相似文献   

12.
In this paper, we investigate the transient characteristics of combustion and emissions during engine start/stop operations in hybrid electric vehicle (HEV) applications. Hydrocarbon (HC) emissions during the initial 2nd∼9th cycles are found to be significantly greater when the engine is quickly started under the original engine calibration mode. Lower intake manifold absolute pressure (MAP) was also found to cause larger residual gas dilution and poor combustion, resulting in a higher HC concentration when the cranking speed was increased. The post-catalyst HC concentration was found in the way of initially decrease and then to increase again as the cranking speed was increased. A lowest concentration value was achieved at a cranking speed of 1000 r/min. Engine shut-down by fuel cut-off was shown to produce lower emissions than shut-down by ignition cut-off as one can avoid misfire of the last fuel injection cycle. The fuel deposited during the stop process seems to impact engine restart enrichment mostly during the initial 0.7 s for this engine, whose performance is dominated by the MAP transition characteristic and the time coefficient for fuel vaporization in this time period  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号