首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modelling uncertainty, parameter variation and unknown external disturbance are the major concerns in the development of an advanced controller for vehicle stability at the limits of handling. Sliding mode control (SMC) method has proved to be robust against parameter variation and unknown external disturbance with satisfactory tracking performance. But modelling uncertainty, such as errors caused in model simplification, is inevitable in model-based controller design, resulting in lowered control quality. The adaptive radial basis function network (ARBFN) can effectively improve the control performance against large system uncertainty by learning to approximate arbitrary nonlinear functions and ensure the global asymptotic stability of the closed-loop system. In this paper, a novel vehicle dynamics stability control strategy is proposed using the adaptive radial basis function network sliding mode control (ARBFN-SMC) to learn system uncertainty and eliminate its adverse effects. This strategy adopts a hierarchical control structure which consists of reference model layer, yaw moment control layer, braking torque allocation layer and executive layer. Co-simulation using MATLAB/Simulink and AMESim is conducted on a verified 15-DOF nonlinear vehicle system model with the integrated-electro-hydraulic brake system (I-EHB) actuator in a Sine With Dwell manoeuvre. The simulation results show that ARBFN-SMC scheme exhibits superior stability and tracking performance in different running conditions compared with SMC scheme.  相似文献   

2.
This paper presents a fault-tolerant brake torque controller for four-wheel-distributed braking systems with in-wheel motors and Electro-Mechanical Brakes (EMB). Mechanical and electrical faults can degrade the performance of the EMB actuators and, thus, their effects need to be compensated in vehicle dynamics level. In this study, the faults are identified as performance degradation and expressed by the gains of each actuator. Assuming the brake force distribution and the regenerative braking ratios, the over-actuated braking system is simplified into a two-input system. A sliding mode controller is designed to track the driver’s braking and steering commands, even if there exist faults in EMBs. In addition, adaptive schemes are constructed to achieve the fault-tolerant control in braking. The proposed controller and strategies are verified in the EMB HILS (Hardware-in-loop-simulation) unit for various conditions.  相似文献   

3.
Lateral control is considered to be one of the toughest challenges in the development of automated vehicles due to their features of nonlinearities, parametric uncertainties and external disturbances. In order to overcome these difficulties, an adaptive fuzzy-sliding mode control strategy used for lateral control of vision-based automated vehicles is proposed in this paper. First, a vision algorithm is designed to provide accurate location information of vehicle relative to reference path. Then, an adaptive fuzzy-sliding mode lateral controller is proposed to counteract parametric uncertainties and strong nonlinearities, and the asymptotic stability of the closed-loop lateral control system is proven by the Lyapunov theory. Finally, experimental results indicate that the proposed algorithm can achieve favourable tracking performance, and it has strong robustness.  相似文献   

4.
A robust controller is designed for active steering of a high speed train bogie with solid axle wheel sets to reduce track irregularity effects on the vehicle’s dynamics and improve stability and curving performance. A half-car railway vehicle model with seven degrees of freedom equipped with practical accelerometers and angular velocity sensors is considered for the H control design. The controller is robust against the wheel/rail contact parameter variations. Field measurement data are used as the track irregularities in simulations. The control force is applied to the vehicle model via ball-screw electromechanical actuators. To compensate the actuator dynamics, the time delay is identified online and is used in a second-order polynomial extrapolation carried out to predict and modify the control command to the actuator. The performance of the proposed controller and actuator dynamics compensation technique are examined on a one-car railway vehicle model with realistic structural parameters and nonlinear wheel and rail profiles. The results showed that for the case of nonlinear wheel and rail profiles significant improvements in the active control performance can be achieved using the proposed compensation technique.  相似文献   

5.
汽车半主动悬架的模型参考自适应控制   总被引:7,自引:5,他引:7  
在1/4车辆动力学模型的基础上,基于李雅普诺夫稳定性理论,以天棚阻尼半主动悬架为参考模型,设计了半主动悬架模型参考自适应控制器。自适应控制器包括可调前置控制器和状态反馈控制器两个部分。推导了自适应控制律与相应的约束条件。仿真结果表明:该控制器对于模型参数的不确定性具有良好的鲁棒特性。自适应控制器不仅明显降低了车身加速度,提高了平顺性,同时也使汽车的行驶安全性获得了改善,悬架动变形稍有增大。  相似文献   

6.
The function of vehicle dynamics control system is adjusting the yaw moment, the longitudinal force and lateral force of a vehicle body through several chassis systems, such as brakes, steering and suspension. Individual systems such as ESC, AFS and 4WD can be used to achieve desired performance by controlling actuator variables. However, integrated chassis control systems that have multiple objectives may not simply achieve the desired performance by controlling the actuators directly. Usually those systems determine the required tire forces in an upper level controller and a lower level controller regulates the tire forces through the actuators. The tire force is controlled in a recursive way based on vehicle state measurement, which may not be sufficient for fast response. For immediate force tracking, we introduce a direct tire force generation method that uses a nonlinear inverse tire model, a pseudo-inverse model of vehicle dynamics and the relationship between longitudinal force and brake pressure.  相似文献   

7.
In this paper, a new non-linear tracking controller for vehicle active suspension systems is analytically designed using an optimization process. The proposed scheme employs a realistic non-linear quarter-car model, which is composed of a hardening spring and a quadratic damping force. The control input is the external active suspension force and is determined by minimizing a performance index defined as a weighted combination of conflicting objectives, namely ride quality, handling performance and control energy. A linear skyhook model with standard parameters is used as the reference model to be tracked by the controller. The robustness of the proposed controller in the presence of modeling uncertainties is investigated. The performed analysis and the simulation results indicate that both vehicle ride comfort and handling performance can be improved using the minimum external force when the proposed non-linear controller is engaged with the model. Meanwhile, a compromise between different objectives and control energy can easily be made by regulating their respective weighting factors, which are the free parameters of the control law.  相似文献   

8.
车速控制系统自适应油门控制器设计   总被引:3,自引:0,他引:3  
在分析非线性车辆纵向动力学模型及简化模型基础上,采用一种简化非线件模型设计自适应油门控制器,并应用李亚谱诺夫理论证明了传动系统存在动态过程时控制系统的稳定性。通过对基于简化线性和非线性模燃的自适应控制器的仿真研究,结果表明后者具有更好的收敛性。试验结果也进一步表明,基于非线性模型的自适应控制器可以通过自适应调节减小参数不确定造成的干扰,当传动系统存在动态过程时可以保证车速跟踪误差有界。  相似文献   

9.
This paper focuses on the safety of high-speed trains under strong crosswind conditions. A new active control strategy is proposed based on the adaptive predictive control theory. The new control strategy aims at adjusting the attitudes of a train by controlling the new-type intelligent giant magnetostrictive actuator (GMA). It combined adaptive control with dynamic matrix control; parameters of predictive controller was real-time adjusted by online distinguishing to enhance the robustness of the control algorithm. On this basis, a correction control algorithm is also designed to regulate the parameters of predictive controller based on the step response of a controlled objective. Finally, the simulation results show that the proposed control strategy can adjust the running attitudes of high-speed trains under strong crosswind conditions; they also indicate that the new active control strategy is effective and applicable in improving the safety performance of a train based on a host–target computer technology provided by Matlab/Simulink.  相似文献   

10.
The tracking control of the steer-by-wire (SBW) system to achevie desired steering motion is the core issue for the design of algorithm. Most of model-based tracking control assumed the constant parameters without the consideration of dynamic characteristics. The external disturbances and model nonlinearities can bring uncertainties of the system parameters. To reduce the influence of parameter uncertainties, an online estimator by output error identification method is proposed to estimate the dynamic parameters of a SBW system. Meanwhile, the parameter gradient projection method is applied to eliminate the parameter drift, while a full order state observer is developed to weaken the effects of noise disturbance during the parameter identification. Since the sensitivity of parameter uncertainties for the feedforward control, the online estimator is incorporated into the control model and improve the controlled robustness. The proposed adaptive feedforward controller is conducted by the real-time experiments to show the tracking performance.  相似文献   

11.
This paper presents the road simulator control technology for reproducing a road input signal to implement real road data. The simulator consists of a hydraulic pump, a servo valve, a hydraulic actuator and its control equipment. QFT (Quantitative Control Theory) is utilized to control the simulator effectively. The control system illustrates a tracking performance of the closed-loop controller with a low order transfer function G(s) and a pre-filter F(s) for a parametric uncertainty model. A force controller is designed to communicate the control signal between the simulator and digital controller. Tracking specification is satisfied with upper and lower bound tolerances on the steep response of the system to the reference signal. The efficacy of the QFT force controller is verified through the numerical simulation in which combined dynamics and actuation of the hydraulic servo system are tested. The simulation results show that the proposed control technique works well under an uncertain hydraulic plant system. The conventional software (Labview) is used to make up for the real controller on a real-time basis, and the experimental works show that the proposed algorithm works well for a single road simulator.  相似文献   

12.
To solve the problem of the existing fault-tolerant control system of four-wheel independent drive (4WID) electric vehicles (EV), which relies on fault diagnosis information and has limited response to failure modes, a modelindependent self-tuning fault-tolerant control method is proposed. The method applies model-independent adaptive control theory for the self-tuning active fault-tolerant control of a vehicle system. With the nonlinear properties of the adaptive control, the complex and nonlinear issues of a vehicle system model can be solved. Besides, using the online parameter identification properties, the requirement of accurate diagnosis information is relaxed. No detailed model is required for the controller, thereby simplifying the development of the controller. The system robustness is improved by the error based method, and the error convergence and input-output bounds are proved via stability analysis. The simulation and experimental results demonstrate that the proposed fault-tolerant control method can improve the vehicle safety and enhance the longitudinal and lateral tracking ability under different failure conditions.  相似文献   

13.
This paper investigates the use of several different inputs for the control of a vehicle, in the context of URD. In this investigation, the goal of the URD controller is to provide an intervention in the event of the vehicle leaving the road. The types of inputs that will be considered are (i) Four Wheel Steering, (ii) Front Wheel Steering, (iii) Four Wheel Brake Steering, (iv) Front Wheel Brake Steering, and (v) Rear Wheel Brake Steering. The controller design is an LQ controller based on the simplified dynamics of a 2 degree of freedom bicycle model. However, the analysis of the different strategies are performed on a 7 degree-of-freedom nonlinear vehicle model. The key contribution of this paper is the quantitative evaluation of the relative efficiencies of each of these input strategies being examined. Unlike most control schemes, the performance measure to be used will not be the output tracking error of the system. Instead, the metric of performance is the ratio of peak tire force used versus available tire force or, in other words, the actuator response relative to the maximum available actuator capability.  相似文献   

14.
A µ-synthesis for four-wheel steering (4WS) problems is proposed. Applying this method, model uncertainties can be taken into consideration, and a µ-synthesis robust controller is designed with optimized weighting functions to attenuate the external disturbances. In addition, an optimal controller is designed using the well-known optimal control theory. Two different versions of control laws are considered here. In evaluations of vehicle performance with the robust controller, the proposed controller performs adequately with different maneuvers (i.e., J-turn and Fishhook) and on different road conditions (i.e., icy, wet, and dry). The numerical simulation shows that the designed µ-synthesis robust controller can improve the performance of a closed-loop 4WS vehicle, and this controller has good maneuverability, sufficiently robust stability, and good performance robustness against serious disturbances.  相似文献   

15.
Optimal Adaptive Cruise Control with Guaranteed String Stability   总被引:2,自引:0,他引:2  
A two-level Adaptive Cruise Control (ACC) synthesis method is presented in this paper. At the upper level, desired vehicle acceleration is computed based on vehicle range and range rate measurement. At the lower (servo) level, an adaptive control algorithm is designed to ensure the vehicle follows the upper level acceleration command accurately. It is shown that the servo-level dynamics can be included in the overall design and string stability can be guaranteed. In other words, the proposed control design produces minimum negative impact on surrounding vehicles. The performance of the proposed ACC algorithm is examined by using a microscopic simulation program - ACCSIM created at the University of Michigan. The architecture and basic functions of ACCSIM are described in this paper. Simulation results under different ACC penetration rate and actuator/engine bandwidth are reported.  相似文献   

16.
A two-level Adaptive Cruise Control (ACC) synthesis method is presented in this paper. At the upper level, desired vehicle acceleration is computed based on vehicle range and range rate measurement. At the lower (servo) level, an adaptive control algorithm is designed to ensure the vehicle follows the upper level acceleration command accurately. It is shown that the servo-level dynamics can be included in the overall design and string stability can be guaranteed. In other words, the proposed control design produces minimum negative impact on surrounding vehicles. The performance of the proposed ACC algorithm is examined by using a microscopic simulation program – ACCSIM created at the University of Michigan. The architecture and basic functions of ACCSIM are described in this paper. Simulation results under different ACC penetration rate and actuator/engine bandwidth are reported.  相似文献   

17.
缪谮  屈文忠  邱阳  张陵 《汽车工程》2001,23(1):9-12
本文提出了一种汽车主动悬架系统的自适应模糊控制方法,该模糊控制方法可以有线自适应调整模糊控制的有关参数。1/4车辆模型作为系统仿真对象,模糊逻辑控制器可以显著发减小车辆的振动及干扰,提高车辆受路面激励时车辆的舒适性。仿真结果清楚地表明该模糊控制方法的有效性。另外,当主动悬架系统模型参数发生变化时该模糊控制器表现出良好的鲁棒性。  相似文献   

18.
In this work, a lateral vehicle dynamics control based on tyre force measurements is proposed. Most of the lateral vehicle dynamics control schemes are based on yaw rate whereas tyre forces are the most important variables in vehicle dynamics as tyres are the only contact points between the vehicle and road. In the proposed method, active front steering is employed to uniformly distribute the required lateral force among the front left and right tyres. The force distribution is quantified through the tyre utilisation coefficients. In order to address the nonlinearities and uncertainties of the vehicle model, a gain scheduling sliding-mode control technique is used. In addition to stabilising the lateral dynamics, the proposed controller is able to maintain maximum lateral acceleration. The proposed method is tested and validated on a multi-body vehicle simulator.  相似文献   

19.
In this paper, a magneto-rheological (MR) damper-based semi-active controller for vehicle suspension is developed. This system consists of a linear quadratic Gauss (LQG) controller as the system controller and an adaptive neuro-fuzzy inference system (ANFIS) inverse model as the damper controller. First, a modified Bouc–Wen model is proposed to characterise the forward dynamic characteristics of the MR damper based on the experimental data. Then, an inverse MR damper model is built using ANFIS technique to determine the input current so as to gain the desired damping force. Finally, a quarter-car suspension model together with the MR damper is set up, and a semi-active controller composed of the LQG controller and the ANFIS inverse model is designed. Simulation results demonstrate that the desired force can be accurately tracked using the ANFIS technique and the semi-active controller can achieve competitive performance as that of active suspension.  相似文献   

20.
汽车纵向加/减速度多模型分层切换控制   总被引:1,自引:0,他引:1  
针对汽车纵向动力学模型的大不确定性,设计了一种基于鲁棒控制理论的汽车纵向加速度多模型分层切换控制系统。通过分析汽车纵向动力学特性,用4个不确定模型覆盖对象不确定性,并应用LM I方法设计对应的鲁棒性能控制器集合。考虑鲁棒控制系统的特点,设计了一种对不确定性的系统增益进行估计的切换指标函数,以选择控制器进行控制。实验表明,提出的方法在大不确定性下可以对纵向加速度有效控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号