首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
从理论上分析了直接转矩控制原理,建立了异步牵引电机在全速域范围内运行的直接转矩控制方案:在低速区采用间接直接转矩控制,并基于间接直接转矩控制提出了一种新的启动限流方法;在中速区基于十八边形磁链采用直接转矩控制;在高速区基于六边形磁链,通过磁链动态调节达到转矩控制的目的.通过仿真对该方案进行了验证,结果表明:提出的异步牵引电机全速域直接转矩控制策略是可行的,系统具有良好的动静态性能,可用于异步牵引电机控制器的研究与开发.  相似文献   

2.
介绍适用于轨道交通的异步牵引电机无速度传感器矢量控制方法。分别从控制原理、不同调制模式的切换、基波电流提取、带速重投以及黏着控制方面对轨道交通中列车异步牵引电机的矢量控制原理进行说明。着重阐述如何根据异步牵引电机数学模型采用全阶磁链观测器观测出异步牵引电机的转子磁链,利用转速估计计算,实现异步牵引电机无速度传感器的转速估计。仿真和实验结果表明,该方法可以实现转速的快速和准确估计,系统具有良好的动静态性能。  相似文献   

3.
根据直接转矩控制理论和车辆系统动力学理论,综合圆形磁链控制和六边形磁链控制的优点,考虑了车辆机械传动系统,建立全速度下高速列车机电一体化控制仿真模型。并针对某高速动车组进行仿真,同时考虑列车起动阻力和运行阻力,分析了在牵引加速、匀速运行、制动减速工况下列车电气和机械部分的状态。仿真结果表明:所建立的系统具有良好的动态和静态性能,能够将车辆电气部分和机械部分充分结合到一起,实现对牵引传动系统的优化控制,仿真方法可用于高速列车机电一体化的深入研究。  相似文献   

4.
如何有效实时检测牵引电机的速度信息是实现动车组高性能牵引控制的基础.本文介绍用于动车组速度的齿轮速度传感器的测速原理,在此基础上,提出一种基于线性插值的电动车组用异步牵引电机转速估计的方法.该方法在低速区和转速调节的动态过程中效果显著,有效克服速度传感器低分辨率带来的测最延时问题,并且转速估计的准确性不受牵引电机参数变...  相似文献   

5.
在分析直接转矩控制系统优缺点的基础上,重点介绍了牵引电机间接定子量磁场定向控制方法(ISC),讨论了基于间接定子量磁场定向的无速度传感器牵引电机控制系统,通过仿真验证了基于间接定子量磁场定向的无速度传感器牵引电机控制方法的有效性.对我国轨道交通运输和电力牵引传动控制技术的研究作了简要的总结和展望.  相似文献   

6.
对高速列车异步牵引电机的直接磁场定向控制技术进行研究。针对某型动车牵引电机,对电压型、电流型以及混合闭环磁链观测器的工作特性进行频率响应函数分析对比,并且仿真实现了基于混合型磁链观测器的牵引电机直接磁场定向控制。结果表明,电机参数偏差影响观测器对转子磁链的观测效果,混合型的闭环磁链观测器具有较强的参数鲁棒性,适合应用于直接磁场定向控制系统中。  相似文献   

7.
介绍电力牵引传动中速度传感器在工程应用中存在故障率高的问题,分析了无速度传感器控制带来的诸多优点.推导了感应电机在T型等效电路基础上的无速度传感器转速估计方法.针对无速度传感器控制在电力牵引中实际应用的关键技术--感应电机带速重投控制进行了深入研究,并对不同情况下的带速重投控制给出了解决方法.  相似文献   

8.
研究了一种基于模型参考自适应的电励磁同步电机无速度传感器控制方案。分别给出了基于电压和电流模型的磁链观测方法,利用基于电压和电流的气隙磁链观测结果之差作为误差,经过PI自适应率进行调节之后得到估计转速。对所研究的电励磁同步电机无速度传感器矢量控制系统进行了仿真试验,仿真结果表明该控制系统能够快速、准确地辨识电机转速。  相似文献   

9.
铁道机车车辆牵引领域中的转矩控制是利用脉冲发生器(PG)来检测牵引感应电动机的转子频率.从提高牵引系统可靠性、降低成本和维修费用以及减小感应电动机尺寸的观点出发,最好不使用PG.为此,一直在研究把无速度传感器控制方法应用于牵引感应电动机的控制,提出了应用无速度传感器的控制策略.文章叙述了铁道机车车辆牵引的新控制方法并出示一些研究试验的结果.  相似文献   

10.
针对直接转矩控制(Direct Torque Control,简称DTC)模式下异步牵引电动机启动峰值电流过大的问题,提出了一种抑制异步牵引电机启动峰值电流的转矩和磁链同步控制策略。根据两相静止αβ坐标系下异步电机的数学模型,利用Matlab/Simulink软件包中的S函数模块和基本模块,构建出交流异步电动机直接转矩控制系统的仿真模型,对其在转矩和磁链不同控制策略下的启动过程进行了动态仿真。仿真结果与目前牵引电机运行的数据接近,证明了该仿真模型的合理性和有效性。这表明,采用转矩和磁链同步控制策略至少可以降低2/3的启动峰值电流。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号