首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
为研究不同类型混凝土在海水中的抗冻性能,笔者利用混凝土快速冻融试验机,对相同水胶比的大掺量粉煤灰混凝土和普通引气混凝土分别在海水中进行了0、100、200、300、400次快速冻融循环试验。测得了冻融循环后粉煤灰混凝土和普通引气混凝土的质量损失、动弹性模量以及单轴抗压强度。根据试验结果,系统地分析了冻融循环次数对两种不同类型混凝土单轴抗压强度的影响。结果表明:随冻融循环次数的增加,两种类型混凝土的单轴强度均逐渐降低,但大掺量粉煤灰混凝土强度降低的程度比普通引气混凝土小,具有更高的抗冻融循环能力。  相似文献   

2.
梁峰  孙晓波  李永毅  潘志峰  李勇 《公路工程》2013,(1):184-186,207
结合大兴安岭某机场建设工程,采用快速冻融试验方法,对掺入不同比例AJF-6高效引气减水剂的混凝土分别进行0、50、100、150、200、250、300次冻融循环试验,测量试件的含气量、质量、相对动弹性模量,并对比研究AJF-6高效引气减水剂对混凝土抗冻性能的影响。试验结果表明AJF-6高效引气减水剂掺量与混凝土含气量关系近似为抛物线关系。为控制混凝土含气量符合要求,其掺量应控制在2.3%~3.0%之间,施工过程中AJF-6高效引气减水剂掺量宜比设计值增加3.0%。  相似文献   

3.
混凝土的冻融破坏是当今混凝土耐久性问题的一个重要方面,在混凝土中掺加适量的引气剂能显著提高混凝土的抗冻性,从而增加混凝土的服役寿命.对混凝土不同冻融循环次数后的相对动弹性模量、失重率做了具体分析,并且对试件从外及里各部分进行了毛细吸水试验.结果表明:引气混凝土经过300次冻融循环后仍保持良好的抗冻性,失重率仅为0.3%,普通混凝土的抗冻性较差,100次循环后失重率达到0.9%;未掺加引气剂的混凝土试件经不同冻融循环后外部毛细吸收系数A值均大于其内部的毛细吸收系数,试件内外损伤程度不同.  相似文献   

4.
为模拟季冻区公路混凝土桥梁台身开裂加固行为,采用6种不同修补方法对混凝土试件表面裂缝进行修补处理,对比分析6种不同修补方法对试件质量损失率、抗压强度和劈拉抗拉强度的影响。结果表明,相同冻融循环次数下,环氧树脂修补法和碳纤维布修补法试件的质量损失率相对较低,具有相对较好的抵抗季冻环境能力;随着冻融循环次数从0增加至150,6组试件的抗压强度和劈裂抗拉强度都呈现逐渐减小特征,且未经过修复的对照组试件抗压强度和劈裂抗拉强度值一直处于最低(相同冻融循环次数),而环氧树脂修补试件和碳纤维布修补试件的抗压强度和劈裂抗拉强度值较高。环氧树脂修补法和碳纤维布修补法都有助于提升季冻区公路混凝土桥梁台身的抗冻融破坏能力。  相似文献   

5.
席红兵  李柏生 《隧道建设》2022,42(7):1219-1226
为研究地铁隧道衬砌支护结构在恶劣环境下的劣化问题,以西部地区地铁隧道服役过程中典型的气候条件和腐蚀环境为背景,研究冻融和盐溶液侵蚀情况下隧道衬砌支护结构的耐久性能。依据兰州秋冬环境温度和地下水中硫酸盐的离子质量浓度设计室内硫酸盐-冻融侵蚀试验,研究不同掺量的粉煤灰和玄武岩纤维对衬砌支护喷射混凝土在不同冻融循环次数作用下的质量损失率、相对动弹性模量和抗压强度耐蚀系数的影响,并根据试验结果建立考虑粉煤灰掺量和玄武岩纤维掺量的抗压强度衰减模型。结果表明: 1)粉煤灰和玄武岩纤维对衬砌支护喷射混凝土性能提升的最优掺量分别为20%和0.1%。2)混凝土的质量损失率随冻融循环先增大后降低,到后期又持续增大;随着粉煤灰和玄武岩纤维掺量的增大,衬砌支护喷射混凝土的质量损失率降低,当粉煤灰和玄武岩掺量分别达到30%和0.15%时,对质量损失率的降低出现负效应。3)喷射混凝土的相对动弹性模量和抗压强度耐蚀系数随着冻融循环次数的增大在初期损失较小,之后迅速增大。  相似文献   

6.
通过水泥混凝土试件的冻融循环试验,研究了聚丙烯纤维掺量和引气剂掺量对冻融作用后混凝土基本力学性能的影响,探讨了聚丙烯纤维和引气剂对混凝土抗冻性能的作用机理,为改善水泥混凝土路面的抗冻融耐久性能提供了资料。  相似文献   

7.
高强度纤维素纤维混凝土抗冻融性能试验研究   总被引:1,自引:0,他引:1  
冻融破坏是混凝土耐久性的重要病害之一,严重影响混凝土结构的使用寿命.本试验研究了C50高强度混凝土抗冻性能随纤维素纤维掺量的变化规律,探讨了纤维素纤维改善混凝土抗冻性能的机理.试验结果表明:掺加纤维素纤维可以明显改善混凝土的抗冻性能,随着冻融次数的增加,纤维的作用愈加明显;300次冻融循环后,素混凝土的相对动弹性模量降为42.46%,而纤维混凝土试件U1、U2、U3和U4的相对动弹性模量分别为68.21%、67.42%、68.32%和70.17%.纤维掺量为0.9~1.5 kg/m<'3>时,纤维素纤维混凝土抗冻标号均大于D300.对于抗冻指标要求高的地区和结构,选用纤维掺量1.3 kg/m<'3>比较经济合理.  相似文献   

8.
为研究掺沥青路面回收料(RAP)再生水泥混凝土的抗冻性能,采用慢冻法研究了冻融循环下RAP掺量(20%、30%、40%、50%)和水灰比(0.4、0.5、0.6、0.7)对再生水泥混凝土外观形貌和抗压强度损失率的影响。结果表明:在冻融循环下,掺沥青路面回收料再生水泥混凝土外观形貌表现出表面裂缝出现-裂缝延伸扩展-裂缝遍布表面-表面浆体胀落-试件彻底解体等发展历程。冻融早期再生水泥混凝土的抗压强度损失较为缓慢,随着冻融次数的不断增加,再生水泥混凝土的强度损失速度也随之加快。随着RAP掺量和水灰比增大,再生水泥混凝土抗压强度损失率随之增大,冻胀解体时承受的循环次数随之减小,抗冻性能随之减弱。  相似文献   

9.
为掌握不同粉煤灰掺量再生粗骨料混凝土的性能,本文通过室内试验分别研究了不同掺量粉煤灰再生混凝土的力学性能及抗冻性能。结果表明:(1)粉煤灰掺入能提升再生混凝土养护后期的抗压强度;(2)随着粉煤灰掺量增加,不同养护龄期混凝土的抗折强度均呈先增后减变化趋势;(3)再生混凝土的抗压强度随着冻融循环次数的增加逐渐减小,且粉煤灰掺量越大,抗压强度减幅越明显;(4)随着冻融次数增加,再生混凝土的质量损失率逐渐增大,但掺量低于30%的混凝土质量损失不显著。  相似文献   

10.
针对聚丙烯纤维陶粒混凝土,开展系列冻融损伤试验、不同冻融损伤次数后的抗压及劈裂抗拉破坏试验,观察冻融损伤试验现象,证实了纤维可以有效改善陶粒混凝土的抗冻性能,并可延缓陶粒混凝土抗压强度和劈裂抗拉强度的衰减。通过测试冻融损伤参量的变化与发展过程,总结归纳出各冻融损伤参量的演变规律。分别以质量、相对动弹性模量、抗压强度、劈裂抗拉强度定义的损伤变量,建立含冻融循环次数和纤维掺量两个自变量的冻融损伤模型,该模型可以很好地反映出纤维陶粒混凝土在冻融循环作用下的损伤过程。  相似文献   

11.
为了考察废旧橡胶环氧树脂混凝土(Waste Rubber Epoxy Resin Concrete,简称WRERC)的性能,探讨其作为路面修复材料的可行性,采用废旧橡胶等体积替代砂石集料制备了高掺量(0-50%)WRERC,研究了废旧橡胶掺量对WRERC孔隙率、力学性能和冻融耐久性的影响。试验结果表明:随着橡胶掺量增大,WRERC孔隙率在掺量低于30%时逐渐增大而后趋于稳定,抗压强度呈近似线性降低,抗压极限应变在掺量低于40%时基本保持不变而后显著增大,抗压应力-应变曲线逐渐趋于平缓,柔性因子增大。冻融试验结果表明,经300次冻融循环,WRERC外观保持完好,未出现裂缝或胶凝材料剥落现象,基本没有质量损失;橡胶掺量增大和冻融次数增加对WRERC抗压应力-应变曲线作用效果相似,均使曲线趋于平缓,峰值应力降低,峰值应变增大,弹性区和塑性区延长;随着冻融循环次数增加,WRERC抗压强度损失率和柔性因子均增大,且橡胶掺量越高,作用效果越明显;橡胶掺量和冻融次数双重作用致使WRERC力学性能劣化,且橡胶掺量影响更大。建议高掺量WRERC可用于非机动车道、停车场、步行街、跑道等场所的铺装修复以及通过降低孔隙率来提升其耐冻融性能。  相似文献   

12.
为改善透水混凝土的强度及耐久性,在透水混凝土制备过程中加入聚羧酸减水剂,研究在不同聚羧酸减水剂添加量和不同减水率条件下,透水混凝土的抗压强度、抗折强度、透水性能以及抗冻融性能的影响。结果表明:在掺量为0.2%、减水率为0.08时,聚羧酸减水剂对透水混凝土的抗折强度影响较小,但可有效提升透水混凝土的28 d抗压强度5 MPa,提升透水性能1.8 mm·s-1,并可明显控制透水混凝土冻融后的质量损失及抗折强度损失。  相似文献   

13.
为考察环氧树脂混凝土在冻融循环条件下性能的变化规律,采用"快冻法",以外观形态、质量损失、抗压性能、抗折性能为考核指标,对环氧树脂混凝土进行了冻融循环试验,并与普通混凝土和引气混凝土进行了对比。试验结果表明:经过300次冻融循环后,环氧树脂混凝土外观形态基本无变化,质量损失低于0.18%;抗压强度降低24.73%,抗压极限应变增加30.38%,抗压弹性模量降低37.91%;抗折强度降低26.27%,抗折极限应变增加77.72%,抗折弹性模量降低8.84%;上述各项指标变化幅度均明显小于普通混凝土和引气混凝土,表明环氧树脂混凝土具有更加优异的耐冻融性能。  相似文献   

14.
C20喷射混凝土冻融力学试验   总被引:1,自引:0,他引:1  
采用喷大板法制做C20喷射混凝土试件,使用压力试验机对经历不同冻融循环次数的试件进行了抗压和抗拉强度测试,分析冻融循环作用下其变化规律,采用共振法和超声波法对经历不同冻融循环次数的喷射混凝土进行动弹性模量测试,分析其抗冻耐久性,并对经历不同冻融循环次数下的试件外观进行了描述。研究结果表明:冻融对喷射混凝土的抗拉和抗压强度影响较大,随着冻融循环次数的增加,抗拉和抗压强度衰减程度增大,相对动弹性模量也逐渐衰减,呈线性降低趋势;C20喷射混凝土的相对耐久性指数非常低,经历50次冻融循环后的耐久性指数为10.1%,与C20普通混凝土相比,其相对耐久性指数更低,抗冻耐久性更差;C20喷射混凝土经历75次冻融循环后出现严重的酥碎剥落情况,不能满足工程抗冻性要求。  相似文献   

15.
通过慢冻法试验以单位面积剥蚀量及相对动弹模量为评价指标研究不同掺量下纳米SiO_2改性混凝土抗盐冻融循环能力,并进行三点弯曲试验,研究其断裂韧度及断裂能损失率,基于此建立水胶比W/B=0.31时的盐冻融损伤回归方程。结果表明:经过纳米SiO_2改性的混凝土抗盐冻融性能明显提升,在60次冻融循环之内,2.0%掺量下最大可分别提升混凝土约70%单位面积剥蚀量、24.2%相对动弹模量、29.5%断裂韧度及10.9%断裂能,且纳米SiO_2存在最佳掺量范围1.5%~2.0%;在W/B=0.31时,纳米SiO_2改性混凝土单位面积剥蚀量、相对动弹模量、断裂韧度损失率以及断裂能损失率与其掺量、冻融次数之间存在较为显著的数学关系。  相似文献   

16.
通过聚丙烯纤维混凝土与冻害混凝土的黏结性能试验研究,主要考察了聚丙烯纤维掺量、界面剂类型及冻融循环作用等对聚丙烯纤维与冻害混凝土黏结性能的影响.试验结果表明,冻融循环作用对新混凝土与损伤混凝土黏结性能的损伤程度较大;聚丙烯纤维的加入明显提高了新混凝土与损伤混凝土的黏结劈拉强度及黏结面的抗冻融循环作用的能力;同时,界面剂类型对新混凝土与损伤混凝土的黏结强度有一定的影响,采用混凝土界面剂的试件的黏结劈拉强度及黏结面的抗冻融作用的能力高于采用水泥净浆的试件.  相似文献   

17.
李振发 《中外公路》2023,(3):265-269
对不同纳米偏高岭土掺量下混凝土冻融前后的单位面积剥蚀量、相对动弹模量、力学强度及断裂特征等指标进行研究,结果表明:纳米偏高岭土可以显著提高混凝土的抗冻性能,其改性混凝土单位面积剥蚀量及相对动弹模量损失率均较基准组有了明显改善;纳米偏高岭土改性混凝土冻融前后的力学强度及断裂性能均较对照组混凝土更高,且经历冻融循环后力学强度、断裂韧性及断裂能损失率更小,同时随着掺量的增大表现出先增大后减小的趋势,6%掺量下可以提升40%左右的开裂峰值荷载,60次冻融循环后抗压强度、抗弯拉强度分别较对照组提升约68.36%、70.28%,且混凝土断裂失稳期间的承载能力仍然较对照组有较大的提高。  相似文献   

18.
王喜彬  张进  马志鸣  管庭 《隧道建设》2016,36(10):1216-1220
对表面防水混凝土和普通混凝土试件进行加速冻融循环试验,在不同循环次数下测定试件的水和氯离子渗透性,旨在研究冻融损伤对表面防水混凝土渗透性影响,为实际工程中表面防水混凝土的结构和耐久性设计提供理论依据。试验结果表明: 表面防水混凝土的水和氯离子渗透量均随着冻融循环次数的增加而增加,但是,对比普通混凝土试件,在相同的冻融循环次数下,表面防水混凝土仍具有较好的抗渗透性能,可以有效降低水和氯离子的侵入量;当冻融循环次数为100次时,水灰比为0.4的普通混凝土试件最大毛细吸水量和氯离子含量分别是表面防水混凝土试件的10.18倍和1.89倍。  相似文献   

19.
为研究因高温和冻融耦合作用而引起的聚丙纤维混凝土损伤,文章通过试验,测试了不同聚丙烯纤维掺量时,混凝土试件经受不同高温和冻融循环次数后的相对动弹性模量。试验结果表明,高温和冻融耦合作用会引起混凝土性能的严重劣化,当高温和冻融耦合作用达到一定程度时,混凝土试件发生断裂破坏;当掺量小于0.10%时,随着聚丙烯纤维掺量的增多,由于高温和冻融耦合作用而引起的相对动弹性模量损失逐渐降低,而当掺量超过0.10%时,再增加聚丙烯纤维掺量,反而会加重混凝土相对动弹性模量的损失。  相似文献   

20.
通过室内试验方法对透水混凝土的影响因素展开研究,对比分析了冻融作用下,不同工作性能、目标孔隙率、水灰比及增强剂掺量对透水混凝土质量损失率、相对动弹性模量的影响。结果表明:透水混凝土试件经25次冻融循环后其抗冻性能满足工程规范要求;随着冻融循环次数的增加,透水混凝土的抗冻性能会下降;透水混凝土工作性能的改善和增强剂掺量的增加可以在一定程度上提升透水混凝土的抗冻性能,但提升效果不大;目标孔隙率和水灰比的增大会导致透水混凝土的抗冻性能出现较大幅度的下降。研究成果可为路用透水混凝土提供理论参考与借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号