首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
动水压强是影响汽车雨天滑水的直接因素.通过建立纵横向花纹轮胎有限元模型,利用Fluent软件模拟不同行驶条件下轮胎所受的动水压强大小以及轮胎不同部位水流速度的分布规律,并根据数据结果回归得出了行车速度、水膜厚度和轮胎花纹深度与动水压强的关系式.结果表明:轮胎所受到的动水压强取决于水膜厚度、胎纹深度及行车速度;随着水膜厚度的增加,动水压强与车速的关系逐渐由非线性向线性转变;行车速度对动水压强的影响最为明显,仅改变轮胎花纹深度不能完全避免车辆滑水.  相似文献   

2.
为研究不同车型在不同车道的运行速度差异,讨论不同设计速度下各车道的运行速度分布特点和规律,并提出不同车道运行速度推荐值,以应用于其他相关几何指标选取和验算。通过调查我国多车道高速公路的交通管理方式,基于包茂高速、西安绕城高速和连霍高速公路的实测不同车道车辆运行速度调查数据,绘制了每条车道的运行速度分布图、正态分布曲线和累计分布曲线,分析得到了多车道高速公路不同车道的运行速度特点和分布规律,并提出了不同设计速度下各车道的运行速度推荐值。结果表明:高速公路第1车道的运行速度大于等于设计速度,剩余车道的运行速度大于等于该车道的限制速度,但低于设计速度,说明车道限速偏低;运行速度由内侧车道向外侧车道呈递减趋势,内侧小客车专用车道运行最高,外侧车辆混行车道运行速度最低;按车型进行车道管理是一种有效的控制措施,对保证内侧小客车运行速度具有积极作用,但外侧车道车辆混行对行驶速度稳定存在负面影响,车辆行驶速度并不稳定;多车道高速公路不同车道的运行速度差异较大,计算道路几何指标时车辆速度直接采用设计速度的85%并不合适,应针对相应的多车道高速公路实际运行状况展开调查,以得到合适的运行速度取值;针对调查路段,统计得到了3车道和4车道高速公路不同车道运行速度推荐值,为其他指标的计算提供依据。  相似文献   

3.
为保证雨天环境下高速公路行驶安全,降低道路整体运行风险,结合雨天风险特征,开展考虑运行风险的雨天可变限速研究。首先应用随机森林模型,标定雨天环境下高速公路动静态风险因素的特征重要度,并结合熵值理论,建立高速公路风险模型、计算风险系数、划分风险等级;之后,以空域自适应算法中可变限速推演变化规律为基础,考虑大、小型车的行驶特征,结合预期风险、雨天停车视距、水膜厚度等因素,优化可变限速模型,细化大、小型车辆的初始控制值,进而提出不同降雨强度、不同能见度下的可变限速推荐值;在此基础上,利用驾驶模拟实景仿真系统、心理生理检测设备、微观交通流仿真软件,开展可变限速系统控制值合理性及驾驶人行车适应性与交通流运行状态的实证分析。研究结果表明:随着能见度降低和降雨量增大,在可变限速控制下,驾驶人呈现出交感神经兴奋性减弱、副交感神经兴奋性增强、心理紧张度降低的状态,其平均心率、心率变异性高频值、心率变异性低频值、心率变异性差异值分别由74.13、0.121、0.643、2.37变为78.23、0.192、0.567、2.01,驾驶人对限速方案的适应性良好;同时,可变限速可保证道路整体通行效率,不会造成交通流风险震动,在小型车、大型车限速分别为80、60 km·h-1和小型车限速60 km·h-1、大型车禁止驶入场景下,碰撞时间均值、中值大于未限速场景,各车道的行车安全性均能得到保障;提出的雨天可变限速控制方法合理,且具有一定工程适应性,能为异常天气高速公路宏观车流主动防控提供理论支撑。  相似文献   

4.
基于 FLUENT 软件轮胎滑水现象模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
基于FL U EN T软件模拟了轮胎滑水产生过程,并计算了不同轮胎花纹、不同车速及不同水膜厚度等条件下轮胎所受动水压强的大小。模拟分析结果表明:①复合花纹轮胎最不易发生滑水,横向花纹次之,纵向花纹最易滑水;②当水膜厚度不变时,同一轮胎所受动水压强随车速的增加而增加,且增长速度随着车速的增加而增加;③当车速不变时,同一轮胎所受动水压强随水膜厚度的增加而增加。以动水压强等于轮胎内部压强时轮胎发生滑水为判断标准,建立了轮胎临界滑水速度与水膜厚度的关系,并根据已有水膜厚度方程,推算出了临界滑水速度与降水量的关系。   相似文献   

5.
降雨对高速公路交通安全和通行效率具有一定的负面影响.运用可变限速控制技术,根据高速公路实时交通流状态和降雨强度,对各路段限速值进行动态优化和调整,减小降雨带来的不利影响.阐述了雨天可变限速控制系统的总体方案,分析了降雨对能见度和路面摩擦系数的影响,建立了雨天环境下高速公路安全车速计算模型;在宏观动态交通流模型METANET基础上,提出了适用于雨天可变限速控制条件的改进模型,并以控制周期内所有车辆总行驶里程最大为目标,建立了雨天可变限速控制优化模型.利用Matlab软件仿真实验,结果表明,与固定限速方式相比,本文建立的可变限速控制方法可提高雨天环境下高速公路车辆运行速度,并降低各路段车速差,保障雨天环境下高速公路安全高效运行.  相似文献   

6.
湿滑路面是一种常见的行车环境,由于这种行车环境的特殊性,导致交通事故的发生率大为提高。针对湿滑路面轮胎临界滑水车速的研究,是一种帮助驾驶员降低发生交通事故的有效行径。影响湿滑路面临界滑水车速的条件有水膜厚度、行驶车速、轮胎状况等。为了更好保证驾驶员的生命和财产安全,通过对车辆进行防滑预警研究可以更为高效明了的为驾驶员安全驾驶提供保障。  相似文献   

7.
通过分析粘滞滑水与动水压强滑水的作用机理及影响因素,明确合理的几何设计可改善路面排水性能,避免车辆行驶产生滑水情况;在既有研究成果的基础上,确定动水压强计算方法及参数取值、水膜厚度和径流长度计算方法,建立高速公路完全滑水条件检验模型;以该模型为基础,对高速公路改扩建工程的常见工况进行完全滑水分析。结果表明,一般路段发生完全滑水的可能性小,超高过渡段为最不利工况;加大纵坡对改善超高过渡段的排水条件有限,增设路拱线是改善改扩建工程路面排水条件的有效方法。  相似文献   

8.
潘兵宏  吴明先  王佐 《中外公路》2012,32(4):333-336
通过分析同向分隔带开口处车辆行驶的特点,从行车安全角度考虑,提出了同向分隔带开口段车辆采用第1次变换车道、等待插入行驶、第2次变换车道的三阶段行驶模型;在此基础上推导出了多车道高速公路同向车道分隔带开口长度计算模型,并提出了在不同设计速度、分隔带宽度和超高情况下的开口长度建议值。  相似文献   

9.
为了提高冰雪条件下城市快速路车辆行驶的安全性,通过视频录像和人工调查等方式获得哈尔滨市部分快速路在不同冰雪条件下的交通流基础数据,分析车流量、大小车型、车道位置等因素对运行速度的影响,并基于车辆追尾时的临界条件以及车辆的跟驰特性,建立与道路附着系数、交通量等参数相关的安全限速模型,并利用不同冰雪路面附着系数对模型中的路面参数进行标定,重点研究了冰雪环境对城市快速路车辆限速的影响,提出按交通量分级限速管理的方法。研究表明:冰雪条件下模型确定的限速值可以满足快速路上车辆的行驶安全;车辆在松雪、冰雪、冰膜路面上的限速值依次降低,在除雪作业后,限速值可以提高10~20km/h;城市快速路在冰雪条件下的限速值需分车道分车型进行设置,相邻车道大、小型车限速值相差5~10km/h;冰雪条件下的限速应根据交通量小于800pcu/h、800~1 500pcu/h、大于1 500pcu/h采用分级限速管理措施,以提高快速路的运输效率。  相似文献   

10.
为明确高速公路行驶环境下车辆在车道保持阶段的行驶轨迹特征,给车道宽度值确定提供参考,在重庆市主城区2段高速公路上开展了38名驾驶人的实车驾驶试验。使用车载设备采集自然驾驶状态下的车辆行驶速度、行驶轨迹和“车辆中心点-车道线”横向距离。基于以上数据,计算轨迹横向偏移值和“车身轮廓-车道线”侧向余宽等参数,分析高速公路直线/曲线路段的车辆轨迹横向偏移和侧向余宽变化特征及其影响因素。结果表明:曲线路段和直线路段的期望轨迹横向偏移存在差异,曲线路段行驶轨迹的本质特征是轨迹往曲线内侧偏移,而直线路段的车辆轨迹是倾向于往车道左侧偏移,但曲线路段紧贴车道线行驶的车辆占比要低于直线路段。直线路段车道左侧余宽最小值、期望值分别集中于[0.2 m, 0.6 m]和[0.3 m, 0.9 m],曲线路段车道左侧余宽的最小值和期望值主要分布在[0.2 m, 0.7 m]和[0.5 m, 0.9 m]范围内;车道位置对期望轨迹横向偏移和车道侧向余宽均有影响,左转弯路段的左侧余宽要低于直线路段和右转弯路段;在左转弯路段内侧车道行驶时车辆与中分带的距离更近,因此左转弯的事故风险更高;行驶速度增加时,内侧车道的车辆有...  相似文献   

11.
利用车辆动力学模型,分析了高速公路横风条件下车辆的侧滑问题,在综合考虑横风风速、车型、路面状况和车速的基础上,对我国4种典型汽车的行驶稳定性进行了分析;同时计算了不同类型车辆在不同横风速度下的安全行驶速度。结果表明:在横风作用下,车辆行驶速度越大,侧滑风险越大。因此,在高速公路上需要设置适当的横风限速,以保证横风条件下的行车安全。  相似文献   

12.
结合北京市典型信号控制交叉口实际情况,现场调查高峰时段7个保护相位下专用双左转车道的车头时距、周期流量、大型车比例等数据,对双左转车道使用特性和调头车辆影响特性进行分析。结果表明,左转车辆的内、外侧车道利用率为50%,大型客车倾向于选择外侧左转车道行驶,给出双左转饱和流率的范围为1587~1818pcu/h/ln,平均值为1665pcu/h/ln,并且得到内、外侧左转饱和车头时距均值无显著性差异的结论。考虑到内侧车道特有的调头行为对左转车辆运行的影响,用数学方法确定了调头行为带来影响的范围,给出左转调头车辆相对于左转标准小型车的当量值为1.39。  相似文献   

13.
近年来发生多起因积水产生的交通事故,为了研究高速公路积水路段小客车行车风险,综合考虑车速、驾驶行为和积水路段线形等因素,利用行车动力学仿真软件CarSim,建立了车辆动力学模型、道路模型以及小客车换道轨迹模型.在临界水膜厚度的基础上,结合车辆侧向偏移量和质心侧偏角,提出临界积水路段长度作为评价指标,通过改变道路圆曲线半径、超高、纵坡、车速和驾驶行为,分析了小客车在积水路段的行车风险影响因素,运用M atlab回归分析建立了积水路段小客车行车风险预测模型,对多雨地区高速公路某积水路段进行了行车风险分析.研究结果表明,所建立的风险预测模型在综合考虑车速、道路圆曲线半径、超高、积水厚度的影响下,能根据积水路段长度判别小客车的行车风险类型和严重性,其中侧滑风险回归模型相关性系数达0.962,侧偏风险回归模型相关性系数达0.753,为针对性提出道路安全管理措施提供了参考依据.   相似文献   

14.
双车道公路弯道处行车轨迹是车辆自由行驶时的重要特征,通过对行车轨迹及运行速度综合效应的分析,得出双车道公路自由行驶的车辆在弯道上行驶时行车轨迹偏移规律,并建立了自由行驶状态下道路线形与行车轨迹和速度之间的相关模型.据此可对弯道处行驶时的驾驶行为及行车安全进行分析,并对道路弯道处线形和断面进行改善.  相似文献   

15.
吴玲  刘建蓓  马小龙  刘玮蔚  王元庆 《公路》2023,(11):182-191
为研究高速公路互通立交分/合流区行驶速度特性,采用基于无人机视频的实时交通参数获取方法,提取试验路段全样本高精度时序速度数据,对比分析互通立交分流区和合流区车道级速度分布差异;研究不同车型速度特性;针对时序数据的长期依赖问题,构建基于时序Transformer的车道级行驶速度短时预测模型,运用平均绝对误差(MAE)和相对误差指标(MAPE)对比分析不同车道的预测精度。分析结果表明:分/合流区施划虚实线两侧客货车道切换过程中,速度变化幅度最大,且2个车道速度离散度最高;分/合流区速度分布基本符合内侧车道实际运行车速比外侧车道高的特性,但合流影响区加速车道较相邻主线车道速度统计值高;主线最高限速值与各车道85%分位车速平均差值为11.77km/h;两种车型速度分布总体呈现双峰特征,且小型车速度分布更为离散;最终所构建的模型预测准确率可达到98.35%,平均绝对误差为0.996km/h。上述结果表明:在工程设计、安全设施布置优化等方面需考虑客货车道的速度顺适过渡以及加速车道和相邻主线车道的速度协调性关系;主线限速标准对于互通分/合流区并不完全适用,驾驶人车速控制主要受行车环境和驾驶需求影响;...  相似文献   

16.
车辆在公路上行驶的自由度不仅受交通量大小的制约,还要受载重车辆因在长大纵坡上减速慢行而产生的阻车限制,在双车道上表现尤为突出。小客车在上坡道上的速度变化不大,而载重汽车却会因爬坡能力不足而减速行驶,结果在坡道上的速度差增大,超车需求增多,危及行车安全性。为解决爬坡路段交通问题最直接的方法就是设置爬坡车道。  相似文献   

17.
不均匀积水条件对路面行车安全的影响   总被引:1,自引:0,他引:1  
采用Fluent有限元仿真分析软件,建立轮胎-路面-流体三维有限元模型,模拟不同水膜厚度和汽车行驶速度条件下汽车轮胎所受动水压力的理论变化值,定量地分析了水膜厚度和车速对积水路面车辆侧转角的影响以及积水段路面上车辆的横向稳定性能.研究结果表明:当水膜厚度大于胎面花纹深度时,动水压强随车速的增大而增加较快,且动水高压区由轮胎中间向轮胎边缘呈近似三角分布.在无驾驶员操控情况下,当汽车左右轮分别高速(> 90 km/h)行驶在干燥和积水路面,水膜厚度介于9~12 mm时,1 s后汽车的相对侧转角差超过最佳控制角度(25.),此时汽车操纵性开始下降;2 s后汽车的相对侧转角差已超过90.,车辆发生侧滑,易产生交通事故.  相似文献   

18.
多车道公路桥梁各行驶车道的车流和荷载特性分布具有显著的差异性,由这些差异性引起的结构响应特性应是桥梁管养关注的重点。根据某单向4车道高速公路实测的WIM数据,分析其运营阶段的交通荷载特性,及在实际车流荷载作用下桥梁结构的真实响应。研究结果表明:不同行驶车道的车型分布具有显著差异性,90%以上的货车偏向于外侧两个车道行驶;车辆总重和轴重水平较规范基础数据有明显的提高;各行驶车道随机车流产生的荷载效应最大值基本大于规范值,外侧车道上荷载效应远大于内侧超车道,说明目前规范基于车道荷载独立同分布的假定与实际情况不相符,车辆荷载模型已无法满足实际的结构设计评估要求,建议修正。  相似文献   

19.
王建旭 《汽车运输》1999,25(8):15-16
汽车在有水路面行驶时,轮胎极易出现水滑现象,造成横向滑移而引起车辆事故事故。其中汽车运行速度,轮胎气压高低及路面状况和水膜厚度等,均影响着轮胎水滑的出现时机及水滑速度。  相似文献   

20.
为了优化山区公路避险车道参数设计方案,基于离散元基本理论与方法,建立轮胎与避险车道集料颗粒流模型。利用自主研发的轮胎性能测试系统对货车轮胎垂直特性进行了室内台架试验研究,通过检测不同输入条件下的响应,标定了轮胎颗粒流模型细观参数。采用漏斗法测量了避险车道集料休止角,结合离散元颗粒流仿真方法,对集料颗粒流模型表面摩擦因数进行了标定。基于所建立的轮胎与避险车道的集料颗粒流模型,仿真分析了轮胎在避险车道中的行驶过程,模拟了车辆在运行过程中的行驶距离、行驶速度与轮胎转速的变化趋势。在甘肃S308省道K209+400处避险车道进行了实车道路试验,试验结果验证了该仿真方法的正确性。通过所建立的轮胎-颗粒流模型对比分析了不同铺设厚度,不同集料大小下的仿真结果。综合考虑减速效果和施工成本,确立了避险车道铺设厚度、铺设长度、颗粒材料等设计技术参数。研究结果表明:离散元法能够很好地模拟车辆在避险车道中的行驶过程;考虑到颗粒固结等因素,建议避险车道铺设厚度不小于0.8 m;针对行驶速度大于90 km·h-1的载货汽车,避险车道设计长度建议大于130 m;避险车道集料方面,建议选用粒径为1~3 cm且圆度较高的砾石作为路床材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号