首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
近年来国内兴建了大量连续刚构桥,主要探讨了余弦曲线法在此类桥梁施工线性控制预拱度分配中的应用,并进一步结合工程实例加以说明.结果表明,相较于其他分配方法,在连续刚构桥线形控制中采用余弦曲线方法分配预拱度与有限元计算结果吻合较好,更能满足平顺的要求.在预应力混凝土连续刚构桥的施工监控中,按余弦曲线分配预拱度的方法是较为合理的.  相似文献   

2.
经验法设置大跨径连续刚构桥预拱度存在诸多问题。通过对连续刚构桥挠度的分析,结合《公路钢筋混凝土及预应力桥涵设计规范》,提出了设置最大预拱度的长期增大系数法及按余弦函数曲线分配预拱度的方法。经实例验证,计算结果与经验范围相符合,且合理有据,值得推广应用。  相似文献   

3.
连续刚构桥现在已发展成一种常见桥型,特别在山区,高墩与挂蓝悬臂施工,使得连续刚构桥更具优势。线型监控是连续刚构桥监控的重点,而预拱度又是线型的重要内容。以正在建设的某公路刚构桥梁为实例阐述连续刚构桥预拱度的计算问题,并应用有限元软件进行计算分析。该桥的顺利合拢,表明该桥的线型控制是成功可行的。  相似文献   

4.
结合某高墩大跨连续刚构桥的建设, 分析了成桥预拱度的影响因素, 对成桥预拱度取值的计算、 曲线设置方法进行了对比分析, 并给出了墩顶抛高值不同时, 余弦曲线拟合预拱度的计算公式, 可为其它类似桥梁的施工监控成桥预拱度的设置提供参考。  相似文献   

5.
针对连续刚构桥下挠严重的问题,合理地设置成桥预拱度非常重要.综合考虑了引起连续刚构桥下挠的各种因素,采用有限元法计算得到了该连续刚构桥的成桥预拱度,结果可为同类桥梁的设计和施工提供参考.  相似文献   

6.
大跨度预应力混凝土连续刚构桥梁的线形平顺美观乃至结构耐久性,与主梁预拱度的合理设置关系密切;本文以某高速公路一座65+2×120+65 m预应力混凝土连续刚构桥为例,介绍了主梁预拱度的设置方法。  相似文献   

7.
曲线连续刚构桥除了主梁要设置预拱度之外,主墩也需要设置类似的横向预偏量.通过分析高墩大跨度预应力混凝土曲线连续刚构桥施工过程中的空间变形特点,探讨施工阶段中各工况对主墩横向变形带来的影响.以某工程实例为背景,建立三维有限元模型计算分析曲线连续刚构桥在施工阶段过程中产生的横向位移,在原有设计的基础上,为桥墩设置正确的横向预偏量提供科学数据,为此类桥梁的设计、施工以及监控等提供参考.  相似文献   

8.
主要依托于两座预应力混凝土连续刚构桥,其中主要以A大桥为例,对其分别采用三种预拱度设置方法计算预拱度,并据此归纳总结三种方法的优缺点。同时,又主要以B大桥为例,分析了顶推力对成桥阶段下产生的内力的状态和线形状态的影响。并以此得出可行的结论。  相似文献   

9.
采用新、旧规范计算大跨连续刚构桥的差别   总被引:1,自引:0,他引:1  
介绍了采用"新规范"、"旧规范"计算大跨连续刚构桥上部结构的差别。按"新规范"计算的组合应力值与按"旧规范"计算的组合应力值有较大的不同,满足"旧规范"的大跨径连续刚构桥按"新规范"验算时需要做较大的调整。  相似文献   

10.
对于大跨径混凝土连续刚构桥的施工监控,线形的控制主要集中在预拱度的设置上,而预设拱度又与桥梁结构的变形计算紧密相连。其中,混凝土徐变变形是很难计算准确的,因而从理论上建立了一个计算这种徐变变形的理论计算公式,其计算结果与其它方法的计算结果基本一致,优点是计算简单准确。  相似文献   

11.
笔者讨论了新《公桥规》中偏载作用下圆截面墩柱裂缝宽度的计算方法,以及传统的用名义拉应力法间接控制裂缝的方法,提出了用名义拉应力直接计算其裂缝宽度的简化计算方法,并对工程中常用的数组数据进行比较验算证明,该计算方法极大地简化了计算程序,并与按新《公桥规》计算的结果吻合较好.  相似文献   

12.
以现行《公路桥涵养护规范》(JTG H11—2004)为依据, 提出一种考虑桥梁实际技术状况等级的钢筋混凝土简支梁桥限载分析方法, 并推算了不同时期规范中桥梁在不同技术状况等级下的典型车辆限载建议值; 以结构可靠度理论和现行规范设计表达式为基础, 以设计活恒载比为基本参数建立了公路桥梁限载简化分析模型; 以现行桥梁设计规范抗力标准值为基准确定了不同技术状况等级桥梁对应的抗力修正系数; 应用公路桥梁限载分析程序分别计算了按《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ 023—85、JTG D62—2004和JTG 3362—2018)设计的桥梁在不同技术状况等级下的限载系数; 依据设计汽车荷载标准值效应限值与典型车辆荷载效应等效假定, 提出了钢筋混凝土简支梁桥的限载建议值。分析结果表明: 在相同的技术状况和安全等级下, JTJ 023—85规范中汽车-超20级和汽车-20级桥梁限载较JTG D62—2004规范中安全等级一级的公路-Ⅰ级和公路-Ⅱ级高, 最大差值分别为1.2和5.0 t; JTG 3362—2018规范中公路-Ⅰ级和公路-Ⅱ级的桥梁限载明显高于JTJ 023—85和JTG D62—2004规范, 最大差值分别为13.8和8.6 t, 且技术状况等级越高, 桥梁限载差值越大; 不同时期规范中桥梁初始设计抗力的差异导致其在相同技术状况等级下的典型车辆限载不同, 在按技术状况等级对在役桥梁制定限载措施时, 应考虑不同时期设计规范的影响。   相似文献   

13.
对某多跨空心板桥进行了无缝化改造, 简支板改为双排支座连续板, 桥台改为延伸桥面板桥台, 取消了全桥的伸缩装置; 测试了实桥静动载, 研究了无缝化改造后的多跨空心板桥受力性能; 应用有限元模型, 计算了结构受力、承载力、引板受力及单、双排支座对结构力学性能的影响。测试结果表明: 无缝化改造后的桥梁实测基频为8.60Hz, 高于改造前的5.37Hz, 4种车速下实测冲击系数最大值为1.11, 小于《公路桥涵设计通用规范》 (JTG D60—2004) 的计算值1.36, 应变与挠度校验系数均小于0.95, 因此, 无缝化改造提高了全桥整体性能, 改善了行车条件。有限元分析结果表明: 无缝化改造后桥梁基频的计算值为8.48Hz, 实测基频与计算基频比值为1.01, 因此, 改造后桥梁功能状况良好; 跨中截面的正弯矩明显降低, 第2跨跨中降幅最大, 达15.6%, 但内支座处出现了负弯矩, 同时剪力增大, 最大增幅为18.2%;跨中挠度明显降低, 以第2、3跨降幅最大, 达35.5%, 桥梁整体刚度明显提高; 最大裂缝宽度计算值为0.15mm, 小于《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTG D62—2004) (简称《桥规》) 规定的0.20mm, 承载力、挠度和裂缝宽度验算均满足《桥规》要求; 支座排数对上部结构的受力影响较小, 采用双排支座是可行的; 引板与地基的摩擦因数对引板和铺装层轴向力影响较大, 对弯矩影响较小; 引板和铺装层最大拉应力分别为0.87、1.25MPa, 满足设计强度要求。   相似文献   

14.
为了建立能方便于工程应用并能够反映钢筋混凝土梁寿命衰减机理的钢筋混凝土梁寿命分析模型,文章研究了混凝土收缩以及荷载长期效应对结构损伤演化和服役寿命的影响,重点考虑了混凝土的损伤演化过程与拉伸区的拉应力对寿命的影响,对现有的钢筋混凝土梁的挠度计算公式进行修正,建立了新型的钢筋混凝土梁的挠度计算公式.在该挠度计算公式的基础上,获得了钢筋混凝土梁的寿命分析模型,该寿命分析模型以《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)规定的桥梁长期挠度限值作为钢筋混凝土梁无法安全服役的限值.研究结果表明:文中修正的钢筋混凝土梁挠度计算公式能够较准确地计算钢筋混凝土梁在长期服役荷载下的任意时刻的挠度值,所建立的钢筋混凝土梁的寿命分析模型能方便地得到梁的安全服役寿命,并具有一定程度的可靠性.  相似文献   

15.
于淑兰 《北方交通》2007,(10):51-53
阐述了在实际工作中对《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)中关于T梁、箱梁翼缘有效宽度的计算、使用场合的理解。  相似文献   

16.
先张法和后张法预应力混凝土构件预应力损失均含有锚具变形、钢筋回缩和接缝压缩损失,该项预应力损失是张拉锚固阶段主要预应力损失.利用《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)中计算锚具变形、钢筋回缩和接缝压缩损失方法和ANSYS有限元分析软件中单元特点,提出了一种在有限元中模拟该项预应力损失的方法,并推导了该项预应力损失的数值计算公式.通过有限元模型的分析现场试验表明:两者结果吻合较好;可以在有限元模型中模拟锚具变形、钢筋回缩和接缝压缩损失,误差均在3%以内.  相似文献   

17.
为了简化部分预应力混凝土梁的设计过程, 减少设计试算的次数, 缩小预应力筋用量的取值范围, 提出了基于裂缝宽度的部分预应力混凝土梁设计方法; 从正常使用状态的裂缝宽度出发, 根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTG D62—2004) (简称《公路规范》) 中对裂缝宽度的规定, 通过最大裂缝宽度求解受拉区普通钢筋的应力, 并建立关于开裂截面中性轴高度的一元三次方程; 根据预应力筋的有效应变要求, 结合《公路规范》中最小配筋率的规定, 得到了预应力筋用量的上、下限; 给出了设计方法的主要步骤和具体验算过程, 并设计了1根T形截面试验梁, 以验证设计方法的合理性。研究结果表明: 验算梁的抗弯承载力及预应力筋用量的上、下限满足规范要求; 试验梁的荷载与挠度基本呈现三折线关系, 在外荷载为50.0kN时, 试验梁跨中出现裂缝, 外荷载为128.5kN时, 试验梁受拉普通钢筋屈服, 外荷载为157.8kN时, 试验梁跨中混凝土压碎破坏, 试验梁总体呈延性破坏特征, 满足承载性能要求; 在受拉普通钢筋屈服前, 试验梁实测最大裂缝宽度为0.18mm, 未超过预估的最大裂缝宽度0.20mm, 满足正常使用要求。可见, 提出的设计方法合理、可行, 能够简化部分预应力混凝土梁的设计过程。   相似文献   

18.
以内蒙古在建的大准铁路增二线黄河连续刚构特大桥为研究对象,采用反应谱分析方法研究了其在水平地震单独作用下、《公路桥梁抗震设计细则》和《铁路工程抗震设计规范》中规定的不同竖向地震分别同水平地震组合下的地震响应。结果表明:考虑竖向地震对连续刚构桥的地震响应非常明显;水平地震和《铁路桥梁抗震规范》中的竖向地震组合时结构地震响应较按《公路桥梁抗震设计细则》竖向地震组合时结构地震响应大,内力最大增幅为27%,位移为26%。  相似文献   

19.
宋亚光  田野 《北方交通》2010,(4):120-122
根据应用《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)6.4.3及6.4.4条公式计算钢筋混凝土偏心受压构件裂缝宽度时出现异常结果的情况,应用数学方法及工程实例对此进行了分析论证。在特定条件下规范公式误差较大。  相似文献   

20.
为研究混凝土无缝桥温度作用取值的地域差异性,对一整体式无缝桥开展了长期温度测试,基于实测数据验证有限元温度场模拟方法的准确性;调研陕西省及周边省份46个国家基准气象站1993~2015年气象数据,对其中缺失太阳辐射数据的站点进行了补充,并将气象站日值数据分解为逐时数据用于温度场分析;利用气象数据进行了23年长期温度场模拟,并基于新西兰规范温度梯度模式,进一步通过广义帕累托模型计算了有效温度和温度梯度作用具有50年重现期的代表值;采用空间插值方法绘制了温度作用等值线地图,并对等值线地图进行简化得到了温度作用分区地图;考虑不同梁高和铺装厚度参数对温度作用模式进行了修正,并最后给出一个分区地图的应用案例,计算了陕西各分区内整体桥的跨径总长限值。研究结果表明:陕西地区有效温度分区地图分布趋势与《公路桥涵设计通用规范》(JTG D60—2015)基本吻合,但关中和陕南部分地区取值较规范更为不利,而对于温度梯度顶部温差,陕北和陕南的大部分地区均超过规范统一取值14 ℃;在梁高小于1.4 m时,不存在新西兰规范温度梯度模式中的等温段,修正后的温度梯度模式能准确反映不同梁高下的温度分布规律;沥青铺装厚度仅对顶部温差影响较大,不同铺装厚度情况下的顶部温差可按线性插值进行修正;整体桥主梁纵向变形量随桥长线性增长,可在自由伸缩变形的基础上通过过引入纵向伸缩量折减系数进行简化计算;桥长可通过考虑升温时的桥台弯曲破坏和降温时的桩低周疲劳破坏进行控制,根据实际合龙温度计算;在提出的3种温度分区中,最优合龙温度下的理论桥长最大值分别为290、240和220 m。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号