首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 63 毫秒
1.
防止地震作用下结构倒塌是基于性能的地震工程的核心目标,目前基于弹塑性时程分析的倒塌易损性分析是结构抗倒塌能力评价最合理的方法。倒塌易损性分析的关键之一是建立合理的倒塌判别准则,文中提出了超高墩刚构桥地震倒塌破坏的判别准则。结合某工程实例,基于O penS-ees建立了结构的非线性分析模型,对其进行了非线性地震时程分析,在此基础上建立了结构的易损性曲线,并讨论了混凝土保护层剥落和钢筋锈蚀等结构劣化对倒塌易损性的影响。  相似文献   

2.
为研究近断层脉冲型地震对尼泊尔砖木结构遗产建筑抗震性能的影响,以一栋2层的砖木结构遗产建筑为例,采用等效框架方法,以地面峰值加速度作为地震动强度指标和层间位移角作为结构损伤指标对其进行动力增量分析,确定了结构极限破坏状态,并分别对结构在脉冲型和非脉冲型地震作用下的易损性曲线进行了比较.研究结果表明:砖木遗产建筑在正常使用、生命安全和防止倒塌3种不同极限状态下对应的层间位移角分别为0.06%、0.32%和0.44%;该类建筑在遭遇地震时有较高的概率达到正常使用极限状态,但其超越生命安全和防止倒塌极限状态的概率相对较低;当达到或超过生命安全状态之后,较小的地面峰值加速度增量就可能导致砖木遗产建筑达到防止倒塌状态;与非脉冲型地震动下的结构响应相比,脉冲型地震动下达到正常使用、生命安全和防止倒塌3个极限状态的概率分别高出18.9%、14.3%和12.6%,在震后修复和加固中应对近断层脉冲型地震动的激励特征予以充分考虑.  相似文献   

3.
为合理评估隧道结构在地震作用下的抗震性能,首先阐述了隧道结构地震易损性基本理论和增量动力分析法的计算方法,运用有限元软件建立了某公路隧道的数值计算模型,采用损伤指数确定了隧道结构的损伤指标,通过输入相应地震波,并利用增量动力分析法对隧道结构进行了动力时程分析,以此得到了隧道结构在不同衬砌厚度下的地震易损性曲线。研究结果表明:当衬砌厚度一定时,随着地面峰值加速度PGA的增加,隧道结构的失效概率不断增加,整体呈现先快后缓的增加趋势;在衬砌厚度与PGA相同的情况下,隧道结构的失效概率随损伤程度的减小而增大;在相同损伤状态下,衬砌厚度越大,隧道结构的失效概率越小;利用增量动力分析法得到隧道结构的地震易损性曲线,可以充分考虑地震作用的随机性和不确定性,并能全面反映隧道结构在不同损伤状态下的损伤概率,是一种十分有效的评估隧道抗震性能的方法。  相似文献   

4.
为了快速评估桥梁结构达到特定损伤状态的概率,基于非线性动力时程分析结果,建立了公路规则梁桥地震易损性模型并提出了简化计算方法.依据不同上部结构支承形式、墩柱形式和设计规范,将公路规则梁桥细化为8种桥型,针对每种桥型分别建构了80个基准桥梁样本作为各类桥型代表.选择墩柱和支座作为桥梁的易损构件,确定桥梁墩柱和支座在不同损伤状态下对应的参数能力范围.用OpenSees建立桥梁样本的有限元模型,采用增量动力分析方法,分析得到各类桥梁的全桥系统地震易损性模型.以计算得到的易损性模型参数为样本,提出适用于我国公路规则梁桥的中位值简化计算公式,同时给出对数标准差的建议值.研究结果表明:对于规则梁桥中位值,双柱式梁桥相对单柱式梁桥增大17%、新规范相对旧规范增长7%、连续梁桥相对简支梁桥增大8%;简化公式计算结果与分类易损性模型吻合较好,均方误差和均方根误差分别为5.26%和5.95%,最大绝对误差10.58%.   相似文献   

5.
为了评估桥梁结构近场抗震性能,建立了桥梁构件的三维地震易损性分析流程. 基于工程结构可靠度理论,用构件三维失效曲面表征墩柱、支座构件的损伤状态,将包含多个单一损伤指标的损伤状态方程作为三维地震易损性分析的损伤指标;其次在既有墩柱弯曲和剪切失效曲面研究的基础上,构建了墩柱弯曲和剪切破坏的损伤状态方程;并基于支座地震损伤的相对变形,建立了支座损伤状态的方程. 在此基础上,构建了墩柱和支座三维地震损伤状态的判别准则,并对不同损伤状态进行了量化. 结合各国桥梁抗震设计规范和工程结构可靠度理论,最后实现了三维地震易损性的计算分析. 通过一维地震易损性的简化验证,表明所提方法可用于桥梁结构的地震易损性分析中,并且所得结果与PSDA (probabilistic seismic demand analysis)法的最大概率偏差小于4%.   相似文献   

6.
框架-复合墙结构是以框架和密肋复合剪力墙共同承担水平地震作用的新型组合式双重抗侧力体系,合理计算弹塑性阶段框架与复合墙的内力是决定大震下结构体系安全性能的关键问题之一.根据6榀典型密肋复合墙试验数据,建立了复合墙体指数式刚度退化模型,量化了墙体在各变形阶段的刚度退化系数.在对比复合墙与框架、混凝土墙、砌体墙刚度退化规律的基础上,分析了复合墙刚度退化对结构受力性能的影响,提出了弹塑性阶段框架-复合墙结构地震内力的实用计算方法,并通过具体算例讨论了结构内力的变化情况.研究结果表明:弹塑性阶段,框架与密肋复合墙刚度退化速度比值呈非线性关系,框架分担总地震剪力的比例增加,但其绝对剪力值增加幅度并不明显;考虑弹塑性阶段复合墙的刚度退化,更好地符合了地震下框架-复合墙结构的实际受力情况.  相似文献   

7.
自锚式悬索桥作为一种高次超静定的柔性结构体系,现行规范仅给出抗震设计原则且相关易损性研究较少。以三塔自锚式悬索桥为研究对象,建立结构有限元动力模型,基于PEER强震数据库选取了10条地震动记录,采用增量动力分析(IDA)方法建立了桥墩、支座、桥塔及吊索构件的顺桥向地震易损性曲线,运用一阶可靠度理论建立桥梁系统的易损性曲线。研究结果表明:顺桥向地震波作用下桥墩、支座发生损伤的概率较高,构件损伤概率从易到难依次为支座、P_1、P_5桥墩、吊索、边塔、中塔;在不同损伤指标下结构整体损伤概率明显高于构件损伤概率。  相似文献   

8.
为了研究地震破坏下高速铁路连续梁桥发生破坏的可能性,根据地震风险性(risk)为地震危险性(hazard)与易损性(fragility)乘积的定义,基于失效概率法,对高速铁路连续梁桥地震风险评估方法进行了分析.通过条带法建立桥梁地震需求模型,基于可靠度函数获得桥梁地震易损性曲线,拟合得到桥梁易损性概率密度函数;根据桥址处地震危险性资料,推导桥址处地震加速度概率密度函数;通过地震加速度概率密度函数与桥梁结构易损性概率密度函数的数值积分,实现桥梁地震风险概率评估.以一座(32+48+32)m高速铁路连续梁桥为例系统演绎了失效概率法桥梁风险评估的实现过程.研究结果表明:当地震危险性资料缺乏或不足时可以通过地震烈度分布函数及其与地震峰值加速度之间的换算关系,推导和完善地震危险性分析资料;对于高速铁路(32+48+32)m连续梁桥100年设计期间内发生轻微损伤的概率为5.16%,发生中等损伤的概率为4.46%,桥梁受到轻微损伤和中等损伤风险概率接近,几乎不可能发生严重损伤和完全破坏.   相似文献   

9.
提出了软土地下建筑物地震易损性的分析的思路.根据软土结构动力反映理论,建立易损性分析的动力模型,结合场地的地震危险性分析得到的地震设防标准和动力参数以及结构抗震性能参数,进行软土结构动力分析.利用累积损伤模型进行软土地基液化概率分析,根据液化概率判断地基液化破坏等级.采用JC拟静力方法进行结构抗震失稳的动力可靠性分析,根据失效概率判定结构抗震失稳破坏等级.  相似文献   

10.
空心砖填充墙体内设置水平滑移层,能削弱墙充墙的斜撑作用,可有效减轻空心砖填充墙的破坏程度.为研究设置水平滑移层框架空心砖填充墙体的平面外稳定性,分析了填充墙平面外破坏模式,基于设置水平滑移层框架空心砖填充墙的平面内拟静力试验,建立设置水平滑移层和未设置水平滑移层的框架空心砖填充墙的有限元模型,开展了平面外数值模拟的对比分析.结果表明:水平滑移层会降低墙体整体性,削弱周边框架对墙体的约束作用;与未设置滑移层的普通填充墙相比,设置水平滑移层的填充墙在平面外荷载作用下的破坏程度增加,平面外位移和刚度退化速率增大,平面外开裂荷载降低43.1%,峰值荷载降低22.2%;设置水平滑移层的填充墙在不同抗震设防烈度的多遇和罕遇地震作用下,墙体平面外承载力大于按规范计算要求的平面外承载力,满足规范要求.  相似文献   

11.
汶川地震桥梁易损性分析   总被引:5,自引:0,他引:5       下载免费PDF全文
为了评估汶川地区公路桥梁系统地震损失风险,基于汶川地震桥梁震害调查,建立了桥梁地震易损性统计模型.采用修正后的汶川地震衰减模型,对桥址处地震动参数PGA进行了估算.假设易损性函数为双参数对数正态分布函数,采用两种不同的统计方法并结合震害调查,运用极大似然法对参数进行估计,得到轻微破坏、中等破坏、严重破坏、完全损毁4种损伤状态对应的桥梁地震易损性曲线.依据桥梁类型和桥梁线形对全体桥梁样本进行分类,针对分类后的桥梁样本子集建立各自独立的地震易损性曲线.对统计结果进行拟合优度检验,结果显示显著性水平在10%以下,计算得到的易损性函数不能被拒绝.  相似文献   

12.
在多维性能极限状态理论框架下,考虑桥梁各构件地震响应参数相关性,引入Nataf变换,提出了改进的桥梁系统多维地震易损性分析方法;以一座三跨V撑连续梁桥为例,利用OpenSees软件建立桥梁系统非线性动力分析模型,从美国太平洋地震研究中心强震数据库中选取20条地震波进行增量动力分析,并获得桥梁结构在地震作用下的最大响应样...  相似文献   

13.
2015年8.1级尼泊尔郭尔喀地震对尼泊尔北部民居造成了较大的破坏. 与采用砖木、砖石、土坯结构等结构形式的传统民居相比,当地常见的含砌体填充墙的自建钢筋混凝土(RC)框架结构的震害相对较轻. 通过静力弹塑性分析方法,从抗侧承载力、延性和抗震能力指数等方面,对比了这一结构体系和按照我国抗震规范设计的约束砌体结构的抗震能力. 针对不同层数结构的分析结果表明,在结构整体布置、层数和用钢量大致相同的条件下,与我国不同设防水平下的约束砌体结构相比,尼泊尔自建RC框架结构均表现出更好的延性性能,但其综合抗震能力随着楼层数的增加而显著降低. 对3、4层的结构,其抗震能力甚至高于按我国8度设防的要求设计建造的约束砌体结构,但对5、6层的结构,其抗震能力则远远低于后者.   相似文献   

14.
基于结构在地震作用下的不同程度损伤,探讨了更为准确、实用的抗震可靠性分析方法。以混凝土多孔砖砌体结构为例,采用抗震损伤指标标定结构在地震作用下的损伤状态等级,将结构损伤状态分级化;考虑抗震设防区实际地震烈度的发生概率,引入概率烈度来改进传统的可靠度计算公式,构建了基于概率烈度的结构抗震损伤可靠性分析方法。实现结构抗震损伤状态及其概率的分级量化评价,为进一步结构抗震研究及抗震风险评估提供分析基础。  相似文献   

15.
为探讨非规则桥梁的抗震性能,建立了典型非规则公路桥梁的地震易损性理论模型.考虑桥梁结构参数和地震动的不确定性,抽样生成桥梁地震易损性分析模型样本库.用OpenSees软件对模型样本库进行非线性动力时程分析,以获得结构动力响应.在研究桥墩反弯点时程曲线和桥墩曲率包络线分布特征的基础上确定桥梁构件的损伤指标.采用概率地震需求分析方法获得桥梁各构件易损性曲线,并基于一阶可靠度理论获得桥梁系统的易损性曲线.结果表明:在地震作用下,非规则桥梁支座最容易损伤破坏,桥梁系统的易损性明显高于桥梁构件的易损性;易损性曲线可用于评估非规则桥梁的抗震性能,为震后桥梁损伤识别提供依据.   相似文献   

16.
针对现行规范中砖砌体结构层数限值和构造柱设置未考虑楼层内墙体面积差异的问题,提出了楼层墙率指标,通过统计大量砖砌体房屋,分析了不同建造年代和类型砖砌体房屋楼层墙率,根据结构抗震评估理论及判别准则,分析了楼层墙率对层数限值和构造柱设置的影响,提出了不同性能目标下层数限值和构造柱设置建议.分析结果表明:为满足大震不倒的要求,在砌体结构承重方向,对设防烈度7度的7层房屋,装配式楼(屋)盖的楼层墙率应不小于5.5%,现浇楼屋盖的楼层墙率应不小于4.5%;对设防烈度8度的6层房屋,装配式楼(屋)盖楼层墙率应不小于6.5%,现浇楼屋盖的楼层墙率应不小于5.5%;对设防烈度9度的4层房屋,装配式楼(屋)盖的楼层墙率应不小于6.5%,现浇楼屋盖的楼层墙率应不小于5.5%.   相似文献   

17.
为研究玄武岩纤维复材 (basalt fiber reinforced polymer,BFRP) 网格改良藏式毛石墙体(简称毛石墙体)的受力性能,分别进行了4片毛石墙体的受压试验及低周水平往复加载试验. 重点研究竖向及水平往复荷载作用下BFRP网格改良毛石墙体的受力行为、破坏形态、承载能力、耗能性能、刚度退化规律等. 试验结果表明:竖向荷载下BFRP网格改良毛石墙体墙身裂缝发展较未改良毛石墙体缓慢,其平均极限抗压承载力是未改良毛石墙体的2.72倍,改良毛石墙体的最终破坏形态为BFRP网格受拉断裂后墙体面外失稳破坏;低周水平往复荷载作用下BFRP网格改良毛石墙体的耗能性能和抗剪承载力较未改良毛石墙体有显著提高,其平均峰值抗剪承载力提高幅度达74.3%;BFRP网格改良毛石墙体的最终破坏形态为斜向贯通裂缝处BFRP网格受拉断裂后墙体的剪切破坏.   相似文献   

18.
陶旭 《交通标准化》2013,(21):60-62
通过对贵州某山区不良地质桩基成孔工艺的介绍与比选,考虑工期与经济性,主要采用片石加粘土按一定比例回填冲击使其形成泥石护壁的施工方法,克服了因特殊地质原因造成的易塌孔、缩孔等问题,为类似地质的桩基施工提供了参考。  相似文献   

19.
为了研究碳纤维增强复合材料(CFRP)网格加固砌体结构的破坏机理及加固效果,通过拟静力试验将一片3层砌体开洞墙体加载至破坏,在破坏集中区域单面粘贴CFRP网格进行加固之后再次进行拟静力试验,以最小加固量为指标对加固前后墙体的抗震性能进行了对比分析,并提出了相应的加固建议. 研究结果表明:采用CFRP网格修复可以有效地阻止和延缓墙体受剪斜裂缝的出现及开展,从而提升了墙体的抗震性能,若以抗剪承载力完全恢复为指标,建议最小修复面积为22%;修复后墙体的破坏模式与修复位置相关,本试验以CFRP网格剥离及窗间墙破坏为主,破坏由低至高逐层发生,同层墙肢范围内,由未修复区向修复区发展;考虑窗间墙破坏易引起结构整体破坏和倒塌,因此应优先修复剪力较大层的窗间墙区域,并提供必要的加强措施.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号