首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 785 毫秒
1.
In this paper the Hybrid Vehicle Routing Problem (HVRP) is introduced and formalized. This problem is an extension of the classical VRP in which vehicles can work both electrically and with traditional fuel. The vehicle may change propulsion mode at any point of time. The unitary travel cost is much lower for distances covered in the electric mode. An electric battery has a limited capacity and may be recharged at a recharging station (RS). A limited number of RS are available. Once a battery has been completely discharged, the vehicle automatically shifts to traditional fuel propulsion mode. Furthermore, a maximum route duration is imposed according to contracts regulations established with the driver. In this paper, a Mixed Integer Linear Programming formulation is presented and a Large Neighborhood Search based Matheuristic is proposed. The algorithm starts from a feasible solution and consists into destroying, at each iteration, a small number of routes, letting unvaried the other ones, and reconstructing a new feasible solution running the model on only the subset of customers involved in the destroyed routes. This procedure allows to completely explore a large neighborhood within very short computational time. Computational tests that show the performance of the matheuristic are presented. The method has also been tested on a simplified version of the HVRP already presented in the literature, the Green Vehicle Routing Problem (GVRP), and competitive results have been obtained.  相似文献   

2.
Electrical vehicles (EVs) have become a popular green transportation means recently because they have lower energy consumption costs and produce less pollution. The success of EVs relies on technologies to extend their driving range, which can be achieved by the good deployment of EV recharging stations. This paper considers a special EV network composed of fixed routes for an EV fleet, where each EV moves along its own cyclic tour of depots. By setting up a recharging station on a depot, an EV can recharge its battery for no longer than a pre-specified duration constraint. We seek an optimal deployment of recharging stations and an optimal recharging schedule for each EV such that all EVs can continue their tours in the planning horizon with minimum total costs. To solve this difficult location problem, we first propose a mixed integer program (MIP) formulation and then derive four new valid inequalities to shorten the solution time. Eight MIP models, which were created by adding different combinations of the four valid inequalities to the basic model, have been implemented to test their individual effectiveness and synergy over twelve randomly generated EV networks. Valuable managerial insights into the usage of valid inequalities and the relations between the battery capacity and the total costs, number of recharging facilities to be installed, and running time are analyzed.  相似文献   

3.
In this paper, a new rich Vehicle Routing Problem that could arise in a real life context is introduced and formalized: the Multi Depot Multi Period Vehicle Routing Problem with a Heterogeneous Fleet. The goal of the problem is to minimize the total delivery cost. A heterogeneous fleet composed of vehicles with different capacity, characteristics (i.e. refrigerated vehicles) and hourly costs is considered. A limit on the maximum route duration is imposed. Unlike what happens in classical multi-depot VRP, not every customer may/will be served by all the vehicles or from all the depots. The planning horizon, as in most real life applications, consists of multiple periods, and the period in which each route is performed is a variable of the problem. The set of periods, within the time horizon, in which the delivery may be carried out is known for each customer. A Mixed Integer Programming (MIP) formulation for MDMPVRPHF is presented in this paper, and an Adaptive Large Neighborhood Search (ALNS) based Matheuristic approach is proposed, in which different destroy operators are defined. Computational results, pertaining to realistic instances, which show the effectiveness of the proposed method, are provided.  相似文献   

4.
This paper presents a novel Adaptive Memory Programming (AMP) solution approach for the Fleet Size and Mix Vehicle Routing Problem with Time Windows (FSMVRPTW). The FSMVRPTW seeks to design a set of depot returning vehicle routes to service a set of customers with known demands, for a heterogeneous fleet of vehicles with different capacities and fixed costs. Each customer is serviced only once by exactly one vehicle, within fixed time intervals that represent the earliest and latest times during the day that service can take place. The objective is to minimize the total transportation costs, or similarly to determine the optimal fleet composition and dimension following least cost vehicle routes. The proposed method utilizes the basic concept of an AMP solution framework equipped with a probabilistic semi-parallel construction heuristic, a novel solution re-construction mechanism, an innovative Iterated Tabu Search algorithm tuned for intensification local search and frequency-based long term memory structures. Computational experiments on well-known benchmark data sets illustrate the efficiency and effectiveness of the proposed method. Compared to the current state-of-the-art, the proposed method improves the best reported cumulative and mean results over most problem instances with reasonable computational requirements.  相似文献   

5.
Temperature-controlled transport is needed to maintain the quality of products such as fresh and frozen foods and pharmaceuticals. Road transportation is responsible for a considerable part of global emissions. Temperature-controlled transportation exhausts even more emissions than ambient temperature transport because of the extra fuel requirements for cooling and because of leakage of refrigerant. The transportation sector is under pressure to improve both its environmental and economic performance. To explore opportunities to reach this goal, the Load-Dependent Vehicle Routing Problem (LDVRP) model has been developed to optimize routing decisions taking into account fuel consumption and emissions related to the load of the vehicle. However, this model does not take refrigeration related emissions into account. We therefore propose an extension of the LDVRP model to optimize routing decisions and to account for refrigeration emissions in temperature-controlled transportation systems. This extended LDVRP model is applied in a case study in the Dutch frozen food industry. We show that taking the emissions caused by refrigeration in road transportation can result in different optimal routes and speeds compared with the LDVRP model and the standard Vehicle Routing Problem model. Moreover, taking the emissions caused by refrigeration into account improves the estimation of emissions related to temperature-controlled transportation. This model can help to reduce emissions of temperature-controlled road transportation.  相似文献   

6.
This paper addresses a Time Dependent Capacitated Vehicle Routing Problem with stochastic vehicle speeds and environmental concerns. The problem has been formulated as a Markovian Decision Process. As distinct from the traditional attempts on the problem, while estimating the amount of fuel consumption and emissions, the model takes time-dependency and stochasticity of the vehicle speeds into account. The Time Dependent Capacitated Vehicle Routing Problem is known to be NP-Hard for even deterministic settings. Incorporating uncertainty to the problem increases complexity, which renders classical optimization methods infeasible. Therefore, we propose an Approximate Dynamic Programming based heuristic as a decision aid tool for the problem. The proposed Markovian Decision Model and Approximate Dynamic Programming based heuristic are flexible in terms that more environmentally friendly solutions can be obtained by changing the objective function from cost minimization to emissions minimization. The added values of the proposed decision support tools have been shown through computational analyses on several instances. The computational analyses show that incorporating vehicle speed stochasticity into decision support models has potential to improve the performance of resulting routes in terms of travel duration, emissions and travel cost. In addition, the proposed heuristic provides promising results within relatively short computation times.  相似文献   

7.
The limited driving ranges, the scarcity of recharging stations and potentially long battery recharging or swapping time inevitably affect route choices of drivers of battery electric vehicles (BEVs). When traveling between their origins and destinations, this paper assumes that BEV drivers select routes and decide battery recharging plans to minimize their trip times or costs while making sure to complete their trips without running out of charge. With different considerations of flow dependency of energy consumption of BEVs and recharging time, three mathematical models are formulated to describe the resulting network equilibrium flow distributions on regional or metropolitan road networks. Solution algorithms are proposed to solve these models efficiently. Numerical examples are presented to demonstrate the models and solution algorithms.  相似文献   

8.
This paper explores how to optimally locate public charging stations for electric vehicles on a road network, considering drivers’ spontaneous adjustments and interactions of travel and recharging decisions. The proposed approach captures the interdependency of different trips conducted by the same driver by examining the complete tour of the driver. Given the limited driving range and recharging needs of battery electric vehicles, drivers of electric vehicles are assumed to simultaneously determine tour paths and recharging plans to minimize their travel and recharging time while guaranteeing not running out of charge before completing their tours. Moreover, different initial states of charge of batteries and risk-taking attitudes of drivers toward the uncertainty of energy consumption are considered. The resulting multi-class network equilibrium flow pattern is described by a mathematical program, which is solved by an iterative procedure. Based on the proposed equilibrium framework, the charging station location problem is then formulated as a bi-level mathematical program and solved by a genetic-algorithm-based procedure. Numerical examples are presented to demonstrate the models and provide insights on public charging infrastructure deployment and behaviors of electric vehicles.  相似文献   

9.
To minimize air pollution from scooters in Taiwan, the government has promoted electric scooters. However, their range limits these vehicles and the establishment of recharge facilities is important for fostering their use. Short distance recreational trips are the most common use for electric scooters, because their limited. Locating recharging stations is thus important if their use is to be widened. A model is developed and the locations of recharging stations determined using an integer program with a case study offering validation. Sensitivity analyses is performed seeking the minimum recharge time and the length of stay at each site. It is found that the speedy charge method for recharging the battery would significantly reduce the number of recharge stations.  相似文献   

10.
The transition to electric vehicles (EV) faces two major barriers. On one hand, EV batteries are still expensive and limited by range, owing to the lack of technology breakthrough. On the other hand, the underdeveloped supporting infrastructure, particularly the lack of fast refueling facilities, makes EVs unsuitable for medium and long distance travel. The primary purpose of this study is to better understand these hurdles and to develop strategies to overcome them. To this end, a conceptual optimization model is proposed to analyze travel by EVs along a long corridor. The objective of the model is to select the battery size and charging capacity (in terms of both the charging power at each station and the number of stations needed along the corridor) to meet a given level of service in such a way that the total social cost is minimized. Two extensions of the base model are also considered. The first relaxes the assumption that the charging power at the stations is a continuous variable. The second variant considers battery swapping as an alternative to charging. Our analysis suggests that (1) the current paradigm of charging facility development that focuses on level 2 charging delivers poor level of service for long distance travel; (2) the level 3 charging method is necessary not only to achieve a reasonable level of service, but also to minimize the social cost; (3) investing on battery technology to reduce battery cost is likely to have larger impacts on reducing the charging cost; and (4) battery swapping promises high level of service, but it may not be socially optimal for a modest level of service, especially when the costs of constructing swapping and charging stations are close.  相似文献   

11.
This study aims to explore how factors including charging infrastructure and battery technology associate the way people currently charge their battery electric vehicles, as well as to explore whether good use of battery capacity can be encouraged. Using a stochastic frontier model applied to panel data obtained in a field trial on battery electric vehicle usage in Japan, the remaining charge when mid-trip fast charging begins is treated as a dependent variable. The estimation results obtained using four models, for commercial and private vehicles, respectively, on working and non-working days, show that remaining charge is associated with number of charging stations, familiarity with charging stations, usage of air-conditioning or heater, battery capacity, number of trips, Vehicle Miles of Travel, paid charging. However, the associated factors are not identical for the four models. In general, EVs with high-capacity batteries are initiated at higher remaining charge, and so are the mid-trip fast charging events in the latter period of this trial. The estimation results also show that there are great opportunities to encourage more efficient charging behavior. It appears that the stochastic frontier modeling method is an effective way to model the remaining charge at which fast-charging should be initiated, since it incorporates trip and vehicle characteristics into the estimation process to some extent.  相似文献   

12.
This paper introduces three variants of the Periodic Location-Routing Problem (PLRP): the Heterogeneous PLRP with Time Windows (HPTW), the Heterogeneous PLRP (HP) and the homogeneous PLRP with Time Windows (PTW). These problems extend the well-known location-routing problem by considering a homogeneous or heterogeneous fleet, multiple periods and time windows. The paper develops a powerful Unified-Adaptive Large Neighborhood Search (U-ALNS) metaheuristic for these problems. The U-ALNS successfully uses existing algorithmic procedures and also offers a number of new advanced efficient procedures capable of handling a multi-period horizon, fleet composition and location decisions. Computational experiments on benchmark instances show that the U-ALNS is highly effective on PLRPs. The U-ALNS outperforms previous methods on a set of standard benchmark instances for the PLRP. We also present new benchmark results for the PLRP, HPTW, HP and PTW.  相似文献   

13.
Increasing concerns on supply chain sustainability have given birth to the concept of closed-loop supply chain. Closed-loop supply chains include the return processes besides forward flows to recover the value from the customers or end-users. Vendor Managed Inventory (VMI) systems ensure collaborative relationships between a vendor and a set of customers. In such systems, the vendor takes on the responsibility of product deliveries and inventory management at customers. Product deliveries also include reverse flows of returnable transport items. The execution of the VMI policy requires vendor to deal with a Closed-loop Inventory Routing Problem (CIRP) consisting of its own forward and backward routing decisions, and inventory decisions of customers. In CIRP literature, traditional assumptions of disregarding reverse logistic operations, knowing beforehand distribution costs between nodes and customers demand, and managing single product restrict the usage of the proposed models in current food logistics systems. From this point of view, the aim of this research is to enhance the traditional models for the CIRP to make them more useful for the decision makers in closed-loop supply chains. Therefore, we propose a probabilistic mixed-integer linear programming model for the CIRP that accounts for forward and reverse logistics operations, explicit fuel consumption, demand uncertainty and multiple products. A case study on the distribution operations of a soft drink company shows the applicability of the model to a real-life problem. The results suggest that the proposed model can achieve significant savings in total cost and thus offers better support to decision makers.  相似文献   

14.
The Pollution-Routing Problem   总被引:1,自引:0,他引:1  
The amount of pollution emitted by a vehicle depends on its load and speed, among other factors. This paper presents the Pollution-Routing Problem (PRP), an extension of the classical Vehicle Routing Problem (VRP) with a broader and more comprehensive objective function that accounts not just for the travel distance, but also for the amount of greenhouse emissions, fuel, travel times and their costs. Mathematical models are described for the PRP with or without time windows and computational experiments are performed on realistic instances. The paper sheds light on the tradeoffs between various parameters such as vehicle load, speed and total cost, and offers insight on economies of ‘environmental-friendly’ vehicle routing. The results suggest that, contrary to the VRP, the PRP is significantly more difficult to solve to optimality but has the potential of yielding savings in total cost.  相似文献   

15.
This paper investigates the market potential and environmental benefits of replacing internal combustion engine (ICE) vehicles with battery electric vehicles (BEVs) in the taxi fleet in Nanjing, China. Vehicle trajectory data collected by onboard global positioning system (GPS) units are used to study the travel patterns of taxis. The impacts of charger power, charging infrastructure coverage, and taxi apps on the feasibility of electric taxis are quantified, considering taxi drivers’ recharging behavior and operating activities. It is found that (1) depending on the charger power and coverage, 19% (with AC Level 2 chargers and 20% charger network coverage) to 56% (with DC chargers and 100% charger network coverage) of the ICE vehicles can be replaced by electric taxis without driving pattern changes; (2) by using taxi apps to find nearby passengers and charging stations, drivers could utilize the empty cruising time to charge the battery, which may increase the acceptance of BEVs by up to 82.6% compared to the scenario without taxi apps; and (3) tailpipe emissions in urban areas could be significantly reduced with taxi electrification: a mixed taxi fleet with 46% compressed-natural-gas-powered (CNG) and 54% electricity-powered vehicles can reduce the tailpipe emissions by 48% in comparison with the fleet of 100% CNG taxis.  相似文献   

16.
As charging-while-driving (CWD) technology advances, charging lanes can be deployed in the near future to charge electric vehicles (EVs) while in motion. Since charging lanes will be costly to deploy, this paper investigates the deployment of two types of charging facilities, namely charging lanes and charging stations, along a long traffic corridor to explore the competitiveness of charging lanes. Given the charging infrastructure supply, i.e., the number of charging stations, the number of chargers installed at each station, the length of charging lanes, and the charging prices at charging stations and lanes, we analyze the charging-facility-choice equilibrium of EVs. We then discuss the optimal deployment of charging infrastructure considering either the public or private provision. In the former, a government agency builds and operates both charging lanes and stations to minimize social cost, while in the latter, charging lanes and stations are assumed to be built and operated by two competing private companies to maximize their own profits. Numerical experiments based on currently available empirical data suggest that charging lanes are competitive in both cases for attracting drivers and generating revenue.  相似文献   

17.
The promotion of Electric Vehicles (EVs) has become a key measure of the governments in their attempt to reduce greenhouse gas emissions. However, range anxiety is a big barrier for drivers to choose EVs over traditional vehicles. Installing more charging stations in appropriate locations can relieve EV drivers’ range anxiety. To determine the locations of public charging stations, we propose two optimization models for two different charging modes - fast and slow charging, which aim at minimizing the total cost while satisfying certain coverage goal. Instead of using discrete points, we use geometric objects to represent charging demands. Importantly, to resolve the partial coverage problem (PCP) for networks, we extend the polygon overlay method to split the demands on the road network. After applying the models to Greater Toronto and Hamilton Area (GTHA) and to Downtown Toronto, we show that the proposed models are practical and effective in determining the locations of charging stations. Moreover, they can eliminate PCP and provide much more accurate results than the complementary partial coverage method (CP).  相似文献   

18.
This paper examines the possible placement of Energy Storage Systems (ESS) on an urban tram system for the purpose of exploring potential increases in operating efficiency through the examination of different locations for battery energy storage. Further, the paper suggests the utilisation of Electric Vehicle (EV) batteries at existing Park and Ride (P&R) sites as a means of achieving additional energy storage at these locations. The study achieves this through MATLAB modelling utilising captured GPS data and publically available information. This study examines the scenario of uni-directional substations with no interconnection between the overhead catenary for both directions of travel, and discusses the trade-offs between ESS size and required current limits.The results show the savings in both energy and basic CO2 emissions alongside the discussion of Return on Investment (RoI) that can be achieved through the potential installation of ESS at identified ideal locations along the tram network. Moreover, this may be extended to the use of EVs as stationary ESS sited at the existing P&R facilities. Further, the model may also be used to inform future infrastructure upgrades and potential improvements to air quality within urban environments.  相似文献   

19.
In this paper, we study the strategies of the most relevant stakeholders with regard to the development and commercialization of electric vehicles (EVs) and their recharging infrastructure. Building on the perspective of socio-technical transitions, we relate the strategies of stakeholders to their current and future interests, as well as to their expectations with regard to EVs. Our analysis is based on a series of 38 semi-structured interviews with representatives of a variety of stakeholders in the Netherlands.EVs pose both opportunities and threats to various stakeholders. They therefore participate in the development of the emerging EV system, primarily in order to learn about the potential positive and negative impacts of these systems on their interests and, ultimately, to be able to grasp the opportunities and mitigate the threats. In other words, the expectations, interests, and resulting strategies of stakeholders relate to and depend upon the specific configuration of the emerging socio-technical system for electric mobility. We identify six potential conflicts of interest: the division of tasks within a public recharging infrastructure; the allocation of charging spots; the ways in which charging behavior can be influenced; the role of fast-charging, technical standards for charging equipment; and supportive policies for full-electric and plug-in hybrid vehicles.In general, the stakeholders do not seem overly concerned about either short-term returns on investments or long-term negative impacts. In this regard, the early phase of the transition can be understood as a relatively carefree phase. In order to continue the development of the emerging EV system and to keep it on the right track, however, for the foreseeable future, supportive policies will be necessary in order to provide a stable and reliable basis for further market expansion.  相似文献   

20.
Unmanned Aerial Vehicles (UAVs) are attracting significant interest for delivery service of small packages in urban areas. The limited flight range of electric drones powered by batteries or fuel cells requires refueling or recharging stations for extending coverage to a wider area. To develop such service, optimization methods are needed for designing a network of station locations and delivery routes. Unlike ground-transportation modes, however, UAVs do not follow a fixed network but rather can fly directly through continuous space. But, paths must avoid barriers and other obstacles. In this paper, we propose a new location model to support spatially configuring a system of recharging stations for commercial drone delivery service, drawing on literature from planar-space routing, range-restricted flow-refueling location, and maximal coverage location. We present a mixed-integer programming formulation and an efficient heuristic algorithm, along with results for a large case study of Phoenix, AZ to demonstrate the effectiveness and efficiency of the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号